Microstructure Observation of Electromigration Behavior in Peripheral C2 Flip Chip Interconnection with Solder Capped Cu Pillar Bump

2011 ◽  
Vol 2011 (1) ◽  
pp. 000828-000836
Author(s):  
Yasumitsu Orii ◽  
Kazushige Toriyama ◽  
Sayuri Kohara ◽  
Hirokazu Noma ◽  
Keishi Okamoto ◽  
...  

The electromigration behavior of 80μm bump pitch C2 (Chip Connection) interconnection is studied and discussed. C2 is a peripheral ultra fine pitch flip chip interconnection technique with solder capped Cu pillar bumps formed on Al pads that are commonly used in wirebonding technique. It allows us an easy control of the space between dies and substrates simply by varying the Cu pillar height. Since the control of the collapse of the solder bumps is not necessary, the technology is called the “C2 (Chip Connection)”. C2 bumps are connected to OSP surface treated Cu substrate pads on an organic substrate by reflow with no-clean process, hence the C2 is a low cost ultra fine pitch flip chip interconnection technology. The reliability tests on the C2 interconnection including thermal cycle tests and thermal humidity bias tests have been performed previously. However the reliability against electromigration for such small flip chip interconnections is yet more to investigate. The electromigration tests were performed on 80μm bump pitch C2 flip chip interconnections. The interconnections with two different solder materials were tested: Sn-2.5Ag and Sn100%. The effect of Ni layers electroplated onto the Cu pillar bumps on electromigration phenomena is also studied. From the cross-sectional analyses of the C2 joints after the tests, it was found that the presence of intermetallic compound (IMC) layers reduces the atomic migration of Cu atoms into Sn solder. The analyses also showed that the Ni layers are effective in reducing the migration of Cu atoms into solder. In the C2 joints, the under bump metals (UBMs) are formed by sputtered Ti/Cu layers. The electro-plated Cu pillar height is 45μm and the solder height is 25μm for 80μm bump pitch. The die size is 7.3-mm-square and the organic substrate is 20-mm-square with a 4 layer-laminated prepreg with thickness of 310μm. The electromigration test conditions ranged from 7 to 10 kA/cm2 with temperature ranging from 125 to 170°C. Intermetallic compounds (IMCs) were formed prior to the test by aging process of 2,000hours at 150°C. We have studied the effect of IMC layers on electromigration induced phenomena in C2 flip chip interconnections on organic substrates. The study showed that the IMC layers in the C2 joints formed by aging process can act as barrier layers to prevent Cu atoms from diffusing into Sn solder. Our results showed potential for achieving electromigration resistant joints by IMC layer formation. The FEM simulation results show that the current densities in the Cu pillar and the solder decrease with increasing Cu pillar height. However an increase in Cu pillar height also leads to an increase in low-k stress. It is important to design the Cu pillar structure considering both the electromigration performance and the low-k stress reduction.

2012 ◽  
Vol 2012 (1) ◽  
pp. 000455-000463 ◽  
Author(s):  
Yasumitsu Orii ◽  
Kazushige Toriyama ◽  
Sayuri Kohara ◽  
Hirokazu Noma ◽  
Keishi Okamoto ◽  
...  

The electromigration behavior of 80 μm pitch solder capped Cu pillar bump interconnection on an organic carrier is studied and discussed. Recently the solder capped Cu pillar bump technology has been widely used in mobile applications as a peripheral ultra fine pitch flip chip interconnection technique. The solder capped Cu pillar bumps are formed on Al pads which are commonly used in wirebonding technique. It allows us an easy control of the space between the die and the substrate simply by varying the Cu pillar height. Since the control of the collapse of the solder bumps is not necessary, the technology is called the “C2 (Chip Connection)”. Solder capped Cu pillar bumps are connected to OSP surface treated Cu substrate pads on an organic substrate by reflow with a no-clean process, hence the C2 is a low cost ultra fine pitch flip chip interconnection technology. It is an ideal technology for the systems requiring fine pitch structures. In 2011, the EM tests were performed on 80 μm pitch solder capped Cu pillar bump interconnections and the effects of Ni barrier layers on the Cu pillars and the preformed intermetallic compound (IMC) layers on the EM tests were studied. The EM test conditions of the test vehicles were 7–10 kA/cm2 at 125–170°C. The Cu pillar height was 45 μm and the solder height was 25 μm. The solder composition was Sn-2.5Ag. Aged condition for pre-formed IMCs was 2,000 hours at 150°C. It was shown that the formation of the pre-formed IMC layers and the insertion of Ni barrier layers are effective in reducing the Cu atoms dissolution. In this report, it is studied that which of the IMC layers, Cu3Sn or Cu6Sn5, is more effective in preventing the Cu atom dissolution. The cross-sectional analyses of the joints after the 2000 hours of the test with 7kA/cm2 at 170°C were performed for this purpose. The relationship between the thickness of Cu3Sn IMC layer and the Cu migration is also studied by performing the current stress tests on the joints with controlled Cu3Sn IMC thicknesses. The samples were thermally aged prior to the tests at a higher temperature (200°C) and in a shorter time (10–50 hours) than the previous experiments. The cross-sectional analyses of the Sn-2.5Ag joints without pre-aging consisting mostly of Cu6Sn5, showed a significant Cu dissolution while the Cu dissolution was not detected for the pre-aged joints with thick Cu3Sn layers. A large number of Kirkendall voids were also observed in the joints without pre-aging. The current stress tests on the controlled Cu3Sn joints showed that Cu3Sn layer thickness of more than 1.5 μm is effective in reducing Cu dissolution in the joints.


2011 ◽  
Vol 2011 (DPC) ◽  
pp. 002404-002423
Author(s):  
Rajesh Katkar ◽  
Michael Huynh ◽  
Laura Mirkarimi

Manufacturing high performance devices with shrinking form factors require a novel packaging approach. The Cu pillar-on-die interconnect is a widely accepted solution to package high performance flip chip devices due to its fine pitch adaptability, good electrical and thermal characteristics and elongated electromigration lifetime. However, the thick Cu pillar increases the stress on the die pad creating reliability issues due to fracture or de-lamination of low-k and extreme low-k (ELK) inter-layer dielectric layers. μPILR™ technology follows a Cu pillar-on-substrate approach that enables both the decoupling the Cu pillar from the ELK layers and enhanced electro-migration performance. This cost-effective alternative technology employs a subtractive etch process to form Cu pillars on substrates with exceptional intrinsic co-planarity. The 3D nature of the pillars offers advantages of increased vertical wetting for high yield in fine pitch assembly and reduction of crack propagation for good thermal cycle performance. Our preliminary investigations suggest that the electromigration lifetime of μPILR interconnects exceed the published lifetime data on various types of flip chip interconnects. In this work, the electromigration performance of two different interconnects will be investigated within Pb-free fine pitch flip chip packages. Interconnects include etched Cu pillar-on-substrate and conventional thin Cu UBM with solder-on-substrate-pad. The package level test vehicle has a large 18x20x0.75mm die with 10,121 interconnects with a minimum pitch of 150 μm packaged on a 40x40x1.19mm substrate with 10 metal layers in a 3-4-3 build up on a core stack. A comprehensive study of electromigration performance of these interconnects will be presented with the experimental determination of their activation energy and current exponent values. The Black's equation will be solved using mean time to failure data obtained from the experiments. A detailed description of the physical changes during the electro-migration failure process due to inter-diffusion and inter-metallic compound formation will be discussed.


1998 ◽  
Vol 555 ◽  
Author(s):  
P. Su ◽  
T. M. Korhonen ◽  
S. J. Hong ◽  
M. A. Korhonen ◽  
C. Y. Li

AbstractIn order to use a flip chip method for bonding the Si chip directly to an organic substrate, compatible under bump metallization (UBM) must be available. Conventional schemes with a copper-based solderable layer are not well compatible with the high-tin solders (such as eutectic Pb-Sn) used with organic substrates. This is due to the rapid reaction between Sn and Cu which depletes the UBM of copper. Ni-based schemes exhibit slower reaction with the solder and have been identified by the semiconductor industry as preferable replacements to Cu-based UBM's. However, Ni-containing metallurgies are often associated with high stresses, which results in poor practical adhesion between the silicon chip and the metallization, leading to interfacial failure during fabrication or service. In this research, several nickel-containing UBM schemes are studied experimentally. Stress measurements are made for each metallization before patterning of UBM pads. An optimal Ni concentration for the UBM is suggested based on the results from this study.


2009 ◽  
Vol 6 (1) ◽  
pp. 59-65
Author(s):  
Karan Kacker ◽  
Suresh K. Sitaraman

Continued miniaturization in the microelectronics industry calls for chip-to-substrate off-chip interconnects that have 100 μm pitch or less for area-array format. Such fine-pitch interconnects will have a shorter standoff height and a smaller cross-section area, and thus could fail through thermo-mechanical fatigue prematurely. Also, as the industry transitions to porous low-K dielectric/Cu interconnect structures, it is important to ensure that the stresses induced by the off-chip interconnects and the package configuration do not crack or delaminate the low-K dielectric material. Compliant free-standing structures used as off-chip interconnects are a potential solution to address these reliability concerns. In our previous work we have proposed G-Helix interconnects, a lithography-based electroplated compliant off-chip interconnect that can be fabricated at the wafer level. In this paper we develop an assembly process for G-Helix interconnects at a 100 μm pitch, identifying the critical factors that impact the assembly yield of such free-standing compliant interconnect. Reliability data are presented for a 20 mm × 20 mm chip with G-Helix interconnects at a 100 μm pitch assembled on an organic substrate and subjected to accelerated thermal cycling. Subsequent failure analysis of the assembly is performed and limited correlation is shown with failure location predicted by finite elements models.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 001643-001669
Author(s):  
Koji Tatsumi ◽  
Kyouhei Mineo ◽  
Takeshi Hatta ◽  
Takuma Katase ◽  
Masayuki Ishikawa ◽  
...  

Solder bumping is one of the key technologies for flip chip connection. Flip chip connection has been moving forward to its further downsizing and higher integration with new technologies, such as Cu pillar, micro bump and Through Silicon Via (TSV). Unlike some methods like solder printing and ball mounting, electroplating is a very promising technology for upcoming finer bump formation. We have been developing SnAg plating chemical while taking technology progress and customers' needs into consideration at the same time. Today, we see more variety of requests including for high speed plating to increase the productivity and also for high density packaging such as narrowing the bump pitch itself and downsizing of the bump diameter. To meet these technical needs, some adjustments of plating chemical will be necessary. This time we developed new plating chemicals to correspond to bump miniaturization. For instance, our new SnAg chemical can control bump morphology while maintaining the high deposition speed. With our new plating chemicals, we can deposit mushroom bumps that grow vertically against the resist surface, also this new chemicals work effectively to prevent short-circuit between mushroom bumps with fine pitch from forming. In addition, we succeeded in developing high speed Cu pillar plating chemicals that can control the surface morphology to create different shapes. We'd like to present our updates on controlling bump morphology for various applications.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000420-000423
Author(s):  
Kwang-Seong Choi ◽  
Ho-Eun Bae ◽  
Haksun Lee ◽  
Hyun-Cheol Bae ◽  
Yong-Sung Eom

A novel bumping process using solder bump maker (SBM) is developed for fine-pitch flip chip bonding. It features maskless screen printing process with the result that a fine-pitch, low-cost, and lead-free solder-on-pad (SoP) technology can be easily implemented. The process includes two main steps: one is the thermally activated aggregation of solder powder on the metal pads on a substrate and the other is the reflow of the deposited powder on the pads. Only a small quantity of solder powder adjacent to the pads can join the first step, so a quite uniform SoP array on the substrate can be easily obtained regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of 130 μm is, successfully, formed.


2007 ◽  
Vol 129 (4) ◽  
pp. 460-468 ◽  
Author(s):  
Karan Kacker ◽  
Thomas Sokol ◽  
Wansuk Yun ◽  
Madhavan Swaminathan ◽  
Suresh K. Sitaraman

Demand for off-chip bandwidth has continued to increase. It is projected by the Semiconductor Industry Association in their International Technology Roadmap for Semiconductors that by the year 2015, the chip-to-substrate area-array input-output interconnects will require a pitch of 80 μm. Compliant off-chip interconnects show great potential to address these needs. G-Helix is a lithography-based electroplated compliant interconnect that can be fabricated at the wafer level. G-Helix interconnects exhibit excellent compliance in all three orthogonal directions, and can accommodate the coefficient of thermal expansion (CTE) mismatch between the silicon die and the organic substrate without requiring an underfill. Also, these compliant interconnects are less likely to crack or delaminate the low-k dielectric material in current and future integrated circuits. The interconnects are potentially cost effective because they can be fabricated in batch at the wafer level and using conventional wafer fabrication infrastructure. In this paper, we present an integrative approach, which uses interconnects with varying compliance and thus varying electrical performance from the center to the edge of the die. Using such a varying geometry from the center to the edge of the die, the system performance can be tailored by balancing electrical requirements against thermomechanical reliability concerns. The test vehicle design to assess the reliability and electrical performance of the interconnects is also presented. Preliminary fabrication results for the integrative approach are presented and show the viability of the fabrication procedure. The results from reliability experiments of helix interconnects assembled on an organic substrate are also presented. Initial results from the thermal cycling experiments are promising. Results from mechanical characterization experiments are also presented and show that the out-of-plane compliance exceeds target values recommended by industry experts. Finally, through finite element analysis simulations, it is demonstrated that the die stresses induced by the compliant interconnects are an order of magnitude lower than the die stresses in flip chip on board (FCOB) assemblies, and hence the compliant interconnects are not likely to crack or delaminate low-k dielectric material.


2012 ◽  
Vol 1428 ◽  
Author(s):  
Osamu Suzuki ◽  
Toshiyuki Sato ◽  
Paul Czubarow ◽  
David Son

AbstractCapillary type underfill is still the mainstream underfill for mass production flip chip applications. Flip chip packages are migrating to ultra low-k, Pb-free, 3D and fine pitch packages. Underfill selection is becoming more critical. This paper discusses the performance and potential of underfills using a novel organic-inorganic hybrid polymer technology.Compared to eutectic and high lead solder, tin-silver-copper solder has lower C.T.E., higher elasticity and greater brittleness. In light of these properties, it is generally better to select high Tg and lower CTE underfill in order to prevent bump fatigue during reliability testing. Given the brittleness of low-k dielectric layers of flip chips, the destruction of low-k layers by stress inside the flip chip packages has become a major issue. Underfills for low-k packages should have low stress, and the warpage should be small. It is expected that as the low-k trend expands, the underfill is required to provide less stress. Low Tg underfill shows lower warpage. New chemical technologies have been developed to address the needs of underfills for low-k/Pb-free flip chip packages, specifically organic-inorganic hybrid polymer compounds. The organic-inorganic hybrid polymer provides excellent cure properties which enable a balanced combination of low stress and good bump protection. The material properties of the underfill were characterized using Differential Scanning Calorimetry (DSC), Thermo-Mechanical Analysis (TMA), and Dynamic Mechanical Analysis (DMA). A daisy-chained test vehicle was used for reliability testing. A detailed study is presented on the underfill properties, reliability data, as well as finite element modeling results.


Sign in / Sign up

Export Citation Format

Share Document