Effect of Low-Temperature Austempering and Quenching and Partitioning Treatments on Adhesive Wear Resistance of High-Silicon Multiphase Steels

2020 ◽  
Vol 29 (6) ◽  
pp. 3542-3550
Author(s):  
Pedro Gabriel Bonella de Oliveira ◽  
Ricardo Tadeu Junior Aureliano ◽  
Luiz Carlos Casteletti ◽  
André Itman Filho ◽  
Amadeu Lombardi Neto ◽  
...  
2019 ◽  
Author(s):  
Pedro Gabriel Bonella de Oliveira ◽  
Ricardo Tadeu Junior Aureliano ◽  
Luiz Carlos Casteletti ◽  
André Itman Filho ◽  
Amadeu Lombardi Neto ◽  
...  

Abstract The quest for safety improvement with weight reduction of vehicles and consequently lower fuel consumption, led the automotive industry to begin research into the third generation of advanced high strength steels. These steels present complex microstructures, composed of martensite, bainite and stable retained austenite. Two of the main treatments for obtaining these microstructures are the low temperature austempering and Quenching and Partitioning (Q&P). The objective of this work is to evaluate the microhardness and adhesive wear performance of a high silicon steel alloyed with niobium submitted to the treatments mentioned above. The austempering treatment was conducted at 340 °C for 1 and 3 hours. Partitioning steps in Q&P were performed at 250 °C for 10, 30 and 60 minutes. Results shows that niobium addition promotes changes in the bainite morphology which improved the wear resistance.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7518
Author(s):  
Marko Sedlaček ◽  
Grega Klančnik ◽  
Aleš Nagode ◽  
Jaka Burja

The aim of this study was to evaluate the effect of austempering compared to quenching and low-temperature tempering on wear resistance of an as-cast medium carbon high-silicon steel intended for rock breaking. Austempering was done by isothermal holding at 270, 300 and 350 °C in molten salt baths, while quenching was done in water. The austempering treatments resulted in microstructural combinations of bainite and martensite. The isothermal holding at 270 °C resulted in bainite and self-tempered martensite, while isothermal holdings at 300 and 350 °C resulted in bainite and untempered martensite. The two quench and temper treatments resulted in tempered martensite. In general austempering resulted in lower hardness values when compared to quenching and tempering but higher impact toughness. The wear resistance was best for quenching and low temperature tempering, followed by austempering at 270 °C, but at slightly lower hardness and 25% higher impact toughness. The other two austempering treatments resulted in worse wear resistance.


1996 ◽  
Vol 457 ◽  
Author(s):  
Kang Jia ◽  
Traugott E. Fischer

ABSTRACTThe microstructure, mechanical properties, abrasion and wear resistance of WC-Co nanocomposites synthesized by the spray conversion technique by McCandlish, Kear and Kim have been investigated. The binder phase of WC-Co nanocomposites is enriched in W and C, compared to conventional cermets. Small amorphous regions exist in the binder despite the slow cooling after liquid phase sintering. Few dislocations are found in the WC grains. The increased WC content and the amorphous regions modify (i.e. strengthen) the binder phase of the composites. Vickers indentation measurements show a hardness of the nanocomposites reaching 2310 kg/mm2. While the toughness of conventional cermets decreases with increasing hardness, the toughness does not decrease further as the WC grain size decreases from 0.7 to 0.07 μm. but remains constant at 8 MPam1/2. Scratches caused by a diamond indenter are small, commensurate with their hardness. These scratches are ductile, devoid of the grain fracture that is observed with conventional materials. The abrasions resistance of nanocomposites is about double that of conventional materials, although their hardness is larger by 23% only. This is due to the lack of WC grain fragmentation and removal which takes place in conventional cermets. Sliding wear resistance of WC/Co is proportional to their hardness; no additional benefit of nanostructure is obtained. This results from the very small size of adhesive wear events in even large WC grains.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 738 ◽  
Author(s):  
Qiong Xu ◽  
Aibin Ma ◽  
Junjie Wang ◽  
Jiapeng Sun ◽  
Jinghua Jiang ◽  
...  

Relatively low compactness and unsatisfactory uniformity of reinforced particles severely restrict the performance and widespread industry applications of the powder metallurgy (PM) metal matrix composites (MMCs). Here, we developed a combined processing route of PM and equal channel angular pressing (ECAP) to enhance the mechanical properties and wear resistance of the SiCp/Al-Si composite. The results indicate that ECAP significantly refined the matrix grains, eliminated pores and promoted the uniformity of the reinforcement particles. After 8p-ECAP, the SiCp/Al-Si composite consisted of ultrafine Al matrix grains (600 nm) modified by uniformly-dispersed Si and SiCp particles, and the composite relative density approached 100%. The hardness and wear resistance of the 8p-ECAP SiCp/Al-Si composite were markedly improved compared to the PM composite. More ECAP passes continued a trend of improvement for the wear resistance and hardness. Moreover, while abrasion and delamination dominated the wear of PM composites, less severe adhesive wear and fatigue mechanisms played more important roles in the wear of PM-ECAP composites. This study demonstrates a new approach to designing wear-resistant Al-MMCs and is readily applicable to other Al-MMCs.


1975 ◽  
Vol 17 (11) ◽  
pp. 986-988
Author(s):  
Yu. M. Lakhtin ◽  
G. N. Neustroev ◽  
N. A. Airapetyan

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1456
Author(s):  
Qiang Wang ◽  
Runling Qian ◽  
Ju Yang ◽  
Wenjuan Niu ◽  
Liucheng Zhou ◽  
...  

In order to improve the wear resistance of 27SiMn steel substrate, Fe−based alloy coatings were prepared by laser cladding technology in the present study. In comparison to the conventional gravity powder feeding (GF) process, high−speed powder feeding (HF) process was used to prepare Fe−based alloy coating on 27SiMn steel substrate. The effect of diversified energy composition of powder materials on the microstructure and properties of coatings were systematically studied. X−ray diffractometer (XRD), optical microscope (OM) and scanning electron microscope (SEM) were used to analyze the phase structure and microstructure of Fe−based alloy coatings, and the hardness and tribological properties were measured by the microhardness tester and ball on disc wear tester, respectively. The results show that the microstructure of conventional gravity feeding (GF) coatings was composed of coarse columnar crystals. In comparison, owing to the diversification of energy composition, the microstructure of the high−speed powder feeding (HF) coatings consists of uniform and small grains. The total energy of the HF process was 75.5% of that of the GF process, proving that high−efficiency cladding can be achieved at lower laser energy. The refinement of the microstructure is beneficial to improve the hardness and wear resistance of the coating, and the hardness of the HF coating increased by 9.4% and the wear loss decreased to 80.5%, compared with the GF coating. The wear surface of the HF coating suffered less damage, and the wear mechanism was slightly adhesive wear. In contrast, wear was more serious in the GF coating, and the wear mechanism was transformed into severe adhesive wear.


2007 ◽  
Vol 342-343 ◽  
pp. 557-560
Author(s):  
Kwon Yong Lee ◽  
Hwan Kim ◽  
D.W. Kim ◽  
Dae Joon Kim ◽  
Myung Hyun Lee ◽  
...  

The sliding wear of four different compositions of novel low temperature degradation-free zirconia/alumina (LTD-free Z/A) composites were characterized in a ceramicceramic point contact pair. The wear tests were performed by a pin-on-disk type wear tester in a linear reciprocal sliding motion with a point contact in both dry and bovine serum lubricated conditions at room temperature. For the dry sliding wear tests, AZ-2 (20 vol% (Y,Nb,Ce)-TZP/ 80 vol% Al2O3) showed the best wear resistance among four kinds of LTD-free Z/A composites. For the bovine serum lubricated sliding wear tests, wear was too little to be measured for all kinds of Z/A composites. These novel LTD-free Z/A composites having excellent wear resistance demonstrated a potential as the alternative materials for the ceramic- ceramic contact pairs of femoral head and acetabular liner in total hip replacement.


1989 ◽  
Vol 168 ◽  
Author(s):  
A. Aguero ◽  
D. Little ◽  
P. Lowden

AbstractA novel low temperature process for the chemical vapour deposition of titanium nitride films has been developed. Titanium sub-halides generated “in situ” by chlorination of titanium pellets are subsequently reacted with ammonia at reduced pressure and temperatures of 450–600° C. The coatings have excellent adhesion and wear resistance. A description of the process and the properties of the coatings produced by it will be presented.


2020 ◽  
Vol 993 ◽  
pp. 836-843
Author(s):  
Ke Guo ◽  
Zhi Qiang Zhang ◽  
Zhong Zheng Pei ◽  
Jie Xu ◽  
Yi Fan Feng

Here we developed a hot-pressed molded resin-based brake pad material reinforced by a nano sodium titanate whisker in comparison with nano potassium titanate whisker. The effect of the whiskers on the tribology behavior was investigated. Though nano sodium titanate whisker reinforced brake material showed higher porosity (+12.29% averagely) and lower hardness (-25.8% averagely) caused by the impurities, it exhibited improved ability in stabilizing the friction coefficient and enhancing 25.5%, 31.1%, 25.9% higher wear resistance, when the volume contents of whisker are 7.5%, 15% and 22.5%, respectively, compared to the nano potassium titanate whisker reinforced brake material. The wear mechanisms of the nano sodium titanate whisker reinforced brake materials were determined as embedded debris, delaminated crater, moderate layers transfer, uniform furrows, primary plateaus and secondary plateaus in similar size, indicating a main wear form of abrasive wear instead of adhesive wear.


Sign in / Sign up

Export Citation Format

Share Document