scholarly journals Development of High-Performance SiCp/Al-Si Composites by Equal Channel Angular Pressing

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 738 ◽  
Author(s):  
Qiong Xu ◽  
Aibin Ma ◽  
Junjie Wang ◽  
Jiapeng Sun ◽  
Jinghua Jiang ◽  
...  

Relatively low compactness and unsatisfactory uniformity of reinforced particles severely restrict the performance and widespread industry applications of the powder metallurgy (PM) metal matrix composites (MMCs). Here, we developed a combined processing route of PM and equal channel angular pressing (ECAP) to enhance the mechanical properties and wear resistance of the SiCp/Al-Si composite. The results indicate that ECAP significantly refined the matrix grains, eliminated pores and promoted the uniformity of the reinforcement particles. After 8p-ECAP, the SiCp/Al-Si composite consisted of ultrafine Al matrix grains (600 nm) modified by uniformly-dispersed Si and SiCp particles, and the composite relative density approached 100%. The hardness and wear resistance of the 8p-ECAP SiCp/Al-Si composite were markedly improved compared to the PM composite. More ECAP passes continued a trend of improvement for the wear resistance and hardness. Moreover, while abrasion and delamination dominated the wear of PM composites, less severe adhesive wear and fatigue mechanisms played more important roles in the wear of PM-ECAP composites. This study demonstrates a new approach to designing wear-resistant Al-MMCs and is readily applicable to other Al-MMCs.

2020 ◽  
Vol 4 (2) ◽  
pp. 115-126
Author(s):  
Anil K. Matta ◽  
Naga S. S. Koka ◽  
Sameer K. Devarakonda

Magnesium Metal Matrix Composites (Mg MMC) have been the focus of consideration by many researchers for the past few years. Many applications of Mg MMCs were evolved in less span of time in the automotive and aerospace sector to capture the benefit of high strength to weight ratio along with improved corrosion resistance. However, the performance of these materials in critical conditions is significantly influenced by several factors including the fabrication methods used for processing the composites. Most of the papers addressed all the manufacturing strategies of Mg MMC but no paper was recognized as a dedicated source for magnesium composites prepared through stir casting process. Since stir casting is the least expensive and most common process in the preparation of composites, this paper reviews particulate based Mg MMCs fabricated with stir casting technology. AZ91 series alloys are considered as the matrix material while the effect of different particle reinforcements, sizes , weight fractions on mechanical and tribological responses are elaborated in support with micro structural examinations. Technical difficulties and latest innovations happened during the last decade in making Mg MMCs as high performance material are also presented.


Author(s):  
Yasser Fouad ◽  
Khaled M. Ibrahim ◽  
Brando Okolo

First results of the influence of Equal Channel Angular Pressing (ECAP) on the wear behavior of the magnesium alloy AZ80 have been discussed. The evident grain refinement and redistribution of second phases in the 4 pass processed materials resulted in an increase of the hardness state in the AZ80 alloy. Wear tests conducted on a pin-on-disc set-up revealed better wear resistance for the 4 pass processed materials. Isothermal aging treatment, at 210°C for 10 hrs, of the ECAP processed materials showed that wear resistance properties are improved markedly. For incremental sliding speeds during the wear test, wear rate of the AZ80 alloy was found to increase.


2007 ◽  
Vol 353-358 ◽  
pp. 595-598 ◽  
Author(s):  
Shi Wei Xu ◽  
Ming Yi Zheng ◽  
Xiao Guang Qiao ◽  
Wei Min Gan ◽  
Kun Wu ◽  
...  

Equal channel angular pressing (ECAP) was performed on extruded Mg-Zn-Y-Zr (Mg-5.0wt%Zn-0.9wt%Y-0.2wt%Zr) alloy at 300 oC. After 8 ECAP passes, average grain size of the alloy was reduced to about 1.4 μm, and the quasicrystalline phases were broken and dispersed in the matrix. In addition, nano- quasicrystallines were precipitated from the matrix during ECAP processing. After ECAP, the elongation to failure of the extruded material was significantly improved. Only after 2 ECAP passes, the elongation to failure was 29%, and after 8 ECAP passes, it reached 35%, which was three times larger than that of the as-extruded alloy. However, both yield strength and ultimate tensile strength were decreased with the increasing ECAP passes, which was considered to be resulted from the {0002} basal plane texture modification during ECAP.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 918
Author(s):  
Boris Straumal ◽  
Natalia Martynenko ◽  
Diana Temralieva ◽  
Vladimir Serebryany ◽  
Natalia Tabachkova ◽  
...  

The effect of equal channel angular pressing (ECAP) on the microstructure, texture, mechanical properties, and corrosion resistance of the alloys Mg-6.0%Ag and Mg-10.0%Gd was studied. It was shown that ECAP leads to grain refinement of the alloys down to the average grain size of 2–3 μm and 1–2 μm, respectively. In addition, in both alloys the precipitation of fine particles of phases Mg54Ag17 and Mg5Gd with sizes of ~500–600 and ~400–500 nm and a volume fraction of ~9% and ~8.6%, respectively, was observed. In the case of the alloy Mg-6.0%Ag, despite a significant grain refinement, a drop in the strength characteristics and a nearly twofold increase in ductility (up to ~30%) was found. This behavior is associated with the formation of a sharp inclined basal texture. For alloy Mg-10.0%Gd, both ductility and strength were enhanced, which can be associated with the combined effect of significant grain refinement and an increased probability of prismatic and basal glide. ECAP was also shown to cause a substantial rise of the biodegradation rate of both alloys and an increase in pitting corrosion. The latter effect is attributed to an increase in the dislocation density induced by ECAP and the occurrence of micro-galvanic corrosion at the matrix/particle interfaces.


Sign in / Sign up

Export Citation Format

Share Document