Microstructures and Wear Resistance of Al-25 wt.%Si Coatings Prepared by High-Efficiency Supersonic Plasma Spraying

2019 ◽  
Vol 28 (6) ◽  
pp. 1308-1317 ◽  
Author(s):  
Zi-ang Jin ◽  
Li-na Zhu ◽  
Hai-dou Wang ◽  
Ming Liu ◽  
Jia-jie Kang ◽  
...  
2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Zi-ang Jin ◽  
Jian-long Ma ◽  
Li-na Zhu ◽  
Hai-dou Wang ◽  
Guo-lu Li ◽  
...  

Abstract Plasma-sprayed ceramic coatings have been widely used in friction and wear protection of mechanical parts. In this paper, the nanostructured Al2O3–13 wt% TiO2 coatings were prepared by high-efficiency supersonic plasma spraying (HESP) and atmospheric plasma spraying (APS), respectively. The surface and section morphology of the coatings were observed by scanning electron microscopy (SEM). The phase composition of the coatings was analyzed by X-ray diffraction (XRD). The dry sliding friction properties of the coatings were tested on UMT-3 friction and wear testing machine. The results show that after plasma spraying, a large amount of γ-Al2O3 phase appears, while the TiO2 phase almost disappears in the coatings; compared with APS, the coatings sprayed by HESP have fewer defects and better coating quality; under dry friction condition, the steady-state friction coefficient of the coatings sprayed by HESP and APS all decreases with the increase of load, and the wear volume all increases with the increase of load. When the load is more than 40 N, wear volume of the coatings sprayed by APS is basically twice that of HESP; the wear mechanism of the coatings sprayed by HESP is the laminar cracking, peeling off and the adhesive wear.


2011 ◽  
Vol 189-193 ◽  
pp. 80-87 ◽  
Author(s):  
Yu Bai ◽  
Zhi Hai Han ◽  
Hong Qiang Li ◽  
Chao Xu ◽  
Yan Li Xu ◽  
...  

In this paper, the microstructure of nanostructured zirconia (ZrO2) based coating fabricated by newly developed process, high efficiency supersonic atmospheric plasma spraying (SAPS), is studied. The velocity and surface temperature of in-flight particles during spraying were monitored by on-line system and the microstructure and phase composition of the as-sprayed coating was characterized with SEM, TEM and XRD. Meanwhile, the bonding strength between the top coating and bond coating was measured. The results showed the average in-flight velocity of YSZ particles in SAPS was about 430m/s, which was much higher than that of conventional atmospheric plasma spraying (APS). The as-sprayed coating was composed of well-adhered fine lamellar structures with thickness of 1-4μm. The desirable structure was attributed to higher impact velocity of in-flight particles during SAPS process, resulting in the improvement of flattening degree of molten particles. Meanwhile, the SAPS-YSZ coating exhibited a bimodal distribution with small grains (30-50nm) and large grains (60-110nm), the latter was the main microstructure of the coating. In addition, it was found that the monoclinic zirconia existing in the original powders transformed into tetragonal phase after plasma spraying and the bonding strength of as-sprayed coating was as high as 46±3MPa. The high efficiency supersonic plasma spray, which offers some unique advantages over the conventional plasma spraying process, is expected to be potentially used to deposit a wide variety of nanostructured coatings at lower cost.


Author(s):  
Lida Shen ◽  
Yinhui Huang ◽  
Zongjun Tian ◽  
Guoran Hua

This paper describes an investigation of nano-Al2O3 powders reinforced ceramic coatings, which has included NiCrAl and Al2O3+13%wt.TiO2 coats pre-produced by atmosphere plasma spraying, implemented by laser sintering. Commercial NiCrAl powders were plasma sprayed onto 45 Steel substrates to give a bond coat with thickness of ∼100μm. The 600μm thick Al2O3+13%wt.TiO2 based coating was also plasma sprayed on top of the NiCrAl bond coat. With 2.5kw continuous wave CO2 laser, nano-Al2O3 ceramic powders were laser sintered on the based Coatings. The micro structure and chemical composition of the modified Al2O3+13%wt.TiO2 coatings were analyzed by such detection devices as scanning electronic microscope (SEM) and x-ray diffraction (XRD). Microhardness, wear resistance and corrosion resistance of the modified coatings were also tested and compared with that of the unmodified. The results show that the crystal grain size of Al2O3 had no obvious growth. In addition, due to the nanostructured Al2O3 ceramic phases, the coatings exhibited higher microhardness, better wear resistance and corrosion resistance than those unmodified counterparts. The complex process of plasma spraying with laser sintering as a potential effective way of the application of ceramic nano materials was also simply discussed and summarized in the end.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1456
Author(s):  
Qiang Wang ◽  
Runling Qian ◽  
Ju Yang ◽  
Wenjuan Niu ◽  
Liucheng Zhou ◽  
...  

In order to improve the wear resistance of 27SiMn steel substrate, Fe−based alloy coatings were prepared by laser cladding technology in the present study. In comparison to the conventional gravity powder feeding (GF) process, high−speed powder feeding (HF) process was used to prepare Fe−based alloy coating on 27SiMn steel substrate. The effect of diversified energy composition of powder materials on the microstructure and properties of coatings were systematically studied. X−ray diffractometer (XRD), optical microscope (OM) and scanning electron microscope (SEM) were used to analyze the phase structure and microstructure of Fe−based alloy coatings, and the hardness and tribological properties were measured by the microhardness tester and ball on disc wear tester, respectively. The results show that the microstructure of conventional gravity feeding (GF) coatings was composed of coarse columnar crystals. In comparison, owing to the diversification of energy composition, the microstructure of the high−speed powder feeding (HF) coatings consists of uniform and small grains. The total energy of the HF process was 75.5% of that of the GF process, proving that high−efficiency cladding can be achieved at lower laser energy. The refinement of the microstructure is beneficial to improve the hardness and wear resistance of the coating, and the hardness of the HF coating increased by 9.4% and the wear loss decreased to 80.5%, compared with the GF coating. The wear surface of the HF coating suffered less damage, and the wear mechanism was slightly adhesive wear. In contrast, wear was more serious in the GF coating, and the wear mechanism was transformed into severe adhesive wear.


2013 ◽  
Vol 341-342 ◽  
pp. 92-95
Author(s):  
Li Jun Wang ◽  
Jian Jun Hao ◽  
Yue Jin Ma ◽  
Jian Guo Zhao ◽  
Jian Chang Li

Using plasma spraying equipment to prepare Al2O3-13wt%TiO2 coating on Q235 substrate. Study of its organization and performance, test the performance of coating microhardness and the resistance of friction and wear resistance then optimize the spraying process parameters. The surface of the coating performance was studied by SEM. The results show that, Coating microhardness can be as high as 1132HV, Far more than the matrix microhardness. The minimum average wear weightlessness of Sample surface is 0.95mg. Greatly improve the wear resistance


2010 ◽  
Vol 37 (3) ◽  
pp. 858-862 ◽  
Author(s):  
高雪松 Gao Xuesong ◽  
黄因慧 Huang Yinhui ◽  
田宗军 Tian Zongjun ◽  
刘志东 Liu Zhidong ◽  
沈理达 Shen Lida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document