scholarly journals Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes

2019 ◽  
Vol 74 (4) ◽  
pp. 1199-1209 ◽  
Author(s):  
Karolina Kucharska ◽  
Edyta Słupek ◽  
Hubert Cieśliński ◽  
Marian Kamiński

Abstract Processing of lignocellulosic biomass includes four major unit operations: pre-treatment, hydrolysis, fermentation and product purification prior to biofuel generation via anaerobic digestion. The microorganisms involved in the fermentation metabolize only simple molecules, i.e., monosugars which can be obtained by carrying out the degradation of complex polymers, the main component of lignocellulosic biomass. The object of this paper was to evaluate the saccharification conditions and identify the process parameters that should be applied to improve the saccharification efficiency of lignocellulosic biomass, defined as the simple sugars concentration, which was considered as a crucial parameter for hydrogen generation via dark fermentation. Drawing global conclusions about the occurring changes in the biomass requires learning about the nature of the biomass structure and composition at different stages of the process. Therefore, techniques for analysis, as FTIR, HPLC and SEM were applied. The experiment was planned employing Box–Behnken design. The advantageous operating conditions and the composition of saccharification enzymatic cocktail were identified and their values occurred similar in the applied border conditions for all tested biomass types. Analysis of the intermediate solid and liquid streams generated during the pre-treatment procedure revealed several structural and compositional changes in the biomass.

2018 ◽  
Vol 156 ◽  
pp. 03022 ◽  
Author(s):  
Diah Meilany ◽  
MTAP Kresnowati ◽  
Tjandra Setiadi

Biorefinery industry used lignocellulosic biomass as the raw material. Oil Palm Empty Fruit Bunch (OPEFB) is one of Indonesian potential lignocellulosic biomass, which consists of hemicellulose with xylan as the main component. Xylitol production via fermentation could use this xylan since it can be converted into xylose. However, the structure of OPEFB is such that hemicellulose is protected in a way that will hinder hydrolysis enzyme to access it. Considering that hemicellulose is more susceptible to heat than cellulose, a hydrothermal process was applied to pre-treat OPEFB before it was hydrolyzed enzymatically. The aim of the research is to map the effect of temperature, solid loading and time of pre-treatment process to obtain and recover as much as possible accessible hemicellulose from OPEFB. The results showed that temperature gave more significant effect than time and solid loading for glucose recovery of OPEFB residues. While xylose recovery varies greatly with temperature, but solid loading and time gave less significant effect.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Yeit Haan Teow ◽  
Meng Teck Chong ◽  
Kah Chun Ho ◽  
Abdul Wahab Mohammad

AbstractAiming to mitigate wastewater pollution arising from the palm oil industry, this university-industry research-and-development project focused on the integration of serial treatment processes, including the use of moving bed biofilm reactor (MBBR), pre-treatment with sand filters and activated carbon filters, and membrane technology for aerobically-digested palm oil mill effluent (POME) treatment. To assess the potential of this sustainable alternative practice in the industry, the developed technology was demonstrated in a pilot-scale facility: four combinations (Combinations I to IV) of unit operations were developed in an integrated membrane-filtration system. Combination I includes a MBBR, pre-treatment unit comprising sand filters and activated carbon filters, ultrafiltration (UF) membrane, and reverse osmosis (RO) membrane, while Combination II excludes MBBR, Combination III excludes UF membrane, and Combination IV excludes both MBBR and UF membrane. Life cycle assessment (LCA) was performed to evaluate potential environmental impacts arising from each combination while achieving the goal of obtaining recycled and reusable water from the aerobically-digested POME treatment. It is reported that electricity consumption is the predominant factor contributing to most of those categories (50–77%) as the emissions of carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen oxides, and volatile mercury during the combustion of fossil fuels. Combination I in the integrated membrane-filtration system with all unit operations incurring high electricity consumption (52 MJ) contributed to the greatest environmental impact. Electricity consumption registers the highest impact towards all life cycle impact categories: 73% on climate change, 80% on terrestrial acidification, 51% on eutrophication, and 43% on human toxicity. Conversely, Combination IV is the most environmentally-friendly process, since it involves only two-unit operations – pre-treatment unit (comprising sand filters and activated carbon filters) and RO membrane unit – and thus incurs the least electricity consumption (41.6 MJ). The LCA offers insights into each combination of the operating process and facilitates both researchers and the industry towards sustainable production.


2021 ◽  
pp. 004051752110449
Author(s):  
Huihui Wang ◽  
Tong Shu ◽  
Pandeng Li ◽  
Yun Bai ◽  
Mengxiong Xiang ◽  
...  

Ramie fiber is known as the “king of natural fibers,” and the key to its wide application is efficient and green manufacturing. Microbial degumming has gradually become a hot area of research due to its environmental protection and mild operating conditions. However, some gummy materials remain after microbial degumming. Xylan is the main component of residual gums; its acetylated branched chains create the space barrier that makes the removal of hemicellulose difficult during ramie degumming. An acetyl xylan esterase (AXE) was obtained from Bacillus pumilus and characterized to solve this problem. Its optimum temperature and pH were 35°C and 8.0, respectively, and it had good temperature and pH stability. These properties were consistent with the conditions of ramie degumming and they laid a foundation for the application of AXE in ramie degumming. Besides, an engineered strain with a high activity of AXE was constructed successfully on the basis of the wild-type degumming strain Pectobacterium carotovorum HG-49 and used for ramie degumming. The removal rate of hemicellulose and total gums by the engineered strain increased by 4.89% and 2.53%, respectively, compared with that of the wild-type strain. Moreover, the role of this AXE in ramie degumming was further proven by X-ray diffraction and scanning electron microscopy. This study showed that AXE played an important role in the removal of hemicellulose in the degumming process of ramie fibers, thus providing a promising degumming strategy for ramie and other bast fiber plants.


2021 ◽  
Vol 72 (2) ◽  
pp. 19-26
Author(s):  
Tahani Mohamad Alhazani ◽  
Badr Abdullah Aldahmash ◽  
Doaa Mohamed El-Nagar ◽  
Khalid Elfaki Ibrahim ◽  
Saheed Olaide Anifowose ◽  
...  

The beet root as dietary supplement hepatoprotective ability has gained interest in recent days. The present study was designed to determine the potential hepatoprotective effect of beet root juice as anti-inflammatory and anti-oxidant agent to eliminate the hepatotoxic effect of diclofenac as wide spread analgesic agent. Male albino mice were divided randomly into 4 groups, the 1st group served as control group, the 2nd group received 8 mL/kg of freshly prepared beet root juice, the 3rd group received oral administration 20 mg/kg of diclofenac and the 4th group pre-treated with beet root before one-hour diclofenac administration for 30 days. Biochemical results revealed sharp significant raised levels of liver enzymes level (AST, ALT, ALP and GGT) in the 3rd group that received diclofenac, besides to marked pathological changes manifested by high pathological scoring system such as hepatocytes degeneration, ballooning, infiltration and fibrosis. Immunohistochemical analysis elucidated massive incidence of MDA as an indicator of oxidative stress, moreover great number of neutrophils were seen as main component of inflammation. Whereas, pre-treatment of beet root juice one hour before diclofenac resulted in significant decrease of liver enzymes, clear attenuation of pathological features, decrease of pathological score. A great reduction of MDA in liver tissue and number of neutrophils stained histochemically. It was concluded that beet root juice possessed beneficial hepatoprotective role against diclofenac, as significant anti-oxidant and anti-inflammatory effect.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 444 ◽  
Author(s):  
Samuel Carrasco ◽  
Javier Silva ◽  
Ernesto Pino-Cortés ◽  
Jaime Gómez ◽  
Fidel Vallejo ◽  
...  

The effect of magnesium chloride as an additive of hydrothermal carbonization (HTC) of lignocellulosic biomass (Pinus radiata sawdust) was studied. The HTC tests were carried out at fixed conditions of temperature and residence time of 220 °C and 1 h, respectively, and varying the dose of magnesium chloride in the range 0.0–1.0 g MgCl2/g biomass. The carbonized product (hydrochar) was tested in order to determine its calorific value (HHV) while using PARR 6100 calorimeter, mass yield by gravimetry, elemental analysis using a LECO TruSpec elemental analyzer, volatile matter content, and ash content were obtained by standardized procedures using suitable ovens for it. The results show that using a dose of 0.75 g MgCl2/g biomass results in an impact on the mass yield that was almost equal to change operating conditions from 220 to 270 °C and from 0.5 to 1 h, without additive. Likewise, the calorific value increases by 33% for this additive dose, resulting in an energy yield of 68%, thus generating a solid fuel of prominent characteristics.


Sign in / Sign up

Export Citation Format

Share Document