Quantification of soybean seed germination response to seed deterioration under PEG-induced water stress using hydrotime concept

2018 ◽  
Vol 40 (7) ◽  
Author(s):  
Esmaeil Bakhshandeh ◽  
Mobina Gholamhossieni
Trees ◽  
2019 ◽  
Vol 33 (6) ◽  
pp. 1627-1638 ◽  
Author(s):  
Claudia Giuliani ◽  
Lorenzo Lazzaro ◽  
Roberto Calamassi ◽  
Gelsomina Fico ◽  
Bruno Foggi ◽  
...  

2011 ◽  
Vol 3 (3) ◽  
pp. 126-129 ◽  
Author(s):  
Zahra RASTEGAR ◽  
Mohammad SEDGHI ◽  
Saeid KHOMARI


2021 ◽  
Vol 186 ◽  
pp. 104450
Author(s):  
Fatemeh Hosseini Sanehkoori ◽  
Hemmatollah Pirdashti ◽  
Esmaeil Bakhshandeh

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1473
Author(s):  
Zlatica Mamlic ◽  
Ivana Maksimovic ◽  
Petar Canak ◽  
Goran Mamlic ◽  
Vojin Djukic ◽  
...  

Soybean production in the system of organic agriculture is not very demanding, and this has been well documented both through experimental results and commercial production. However, one of the biggest problems in organic production is the lack of adequate pre-sowing treatments. Therefore, the aim of this study was to examine the effect of the electrostatic field. This is a physical treatment that was first used for seed treatment in the 18th century but has mostly been neglected since then. Seeds of five soybean genotypes with differently colored seed coats (yellow, green, dark green, brown, and black) were included in this study. The seeds were exposed to different values of direct current (DC) with the following voltages: 0 V (control), 3 V, 6 V, and 9 V, to which the seeds were exposed for 0 min (control), 1 min, and 3 min. After exposing the seeds to the electric field, the physiological properties of seeds and seedlings at the first stage of growth were evaluated. The results show that the effect of the electrostatic field on seed quality depends on the genotype, voltage, and exposure time. The application of DC can be a suitable method for improving seed germination and the initial growth of soybean seedlings. In addition, the results indicate that it is necessary to adjust the DC treatment (voltage and duration of exposure of seeds) to particular genotypes since inadequate treatments may reduce the quality of seeds.


2020 ◽  
pp. 1-9
Author(s):  
Nidia H. Montechiarini ◽  
Luciana Delgado ◽  
Eligio N. Morandi ◽  
Néstor J. Carrillo ◽  
Carlos O. Gosparini

Abstract During soybean seed germination, the expansive growth potential of the embryonic axes is driven by water uptake while cell wall loosening occurs in cells from the elongation zone (EZ). Expansins are regarded as primary promoters of cell wall remodelling in all plant expansion processes, with the expression profiles of the soybean expansins supporting their cell or tissue specificity. Therefore, we used embryonic axes isolated from whole seed and focused on the EZ to study seed germination. Using a suite of degenerate primers, we amplified an abundantly expressed expansin gene at the EZ during soybean embryonic axis germination, which was identified as EXP1 by in silico analyses. Expression studies showed that EXP1 was induced under germination conditions in distilled water and down-regulated by abscisic acid (ABA), which inhibits soybean germination by physiologically restraining expansion. Moreover, we also identified a time window of ABA responsiveness within the first 6 h of incubation in water, after which ABA lost control of both EXP1 expression and embryonic axis germination, thus confirming the early role of EXP1 in the EZ during this process. By contrast, EXP1 levels in the EZ increased even when germination was impaired by osmotically limiting the water availability required to develop the embryonic axes’ growth potential. We propose that these higher EXP1 levels are involved in the fast germination of soybean embryonic axes as soon as water availability is re-established. Taken together, our results show strong EXP1 expression in the EZ and postulate EXP1 as a target candidate for soybean seed germination control.


2021 ◽  
Vol 281 ◽  
pp. 109987
Author(s):  
Naeimeh Sousaraei ◽  
Benjamin Torabi ◽  
Kambiz Mashaiekhi ◽  
Elias Soltani ◽  
Seyyed Javad Mousavizadeh

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Yun-Yin Feng ◽  
Jin He ◽  
Yi Jin ◽  
Feng-Min Li

Both water stress and P deficit limit soybean seed yield, but the effects of water regimes and P application rates, their interaction on P status, acquisition, and partitioning, and their roles in yield performance have not been well-studied. Two soybean genotypes (Huangsedadou (HD) and Zhonghuang 30 (ZH)) with contrasting seed yield and root dry weight (DW) were used to investigate the P status, P acquisition, P partitioning, and yield formation under two water regimes (well-watered (WW) and cyclic water stress (WS)) and three P rates (0 (P0), 60 (P60), and 120 (P120) mg P kg−1 dry soil). The results show that increased P and water supply increased the seed yield, shoot and root DW and P concentrations and accumulations in different organs. Cultivar ZH had a significantly higher seed yield than HD at P60 and P120 under WS and at P0 under WW, but a lower seed yield at P60 and P120 under WW. Cultivar ZH had a significantly higher P harvest index and P acquisition efficiency, but a significantly lower shoot and root DW than HD. The interaction between water treatments and P rates had significant effects on leaf and stem P concentration. Cultivar ZH had significantly lower P partitioning to leaves and stems but significantly higher P partitioning to seeds than HD. The seed yield was positively correlated with leaf and seed P accumulations and P acquisition efficiency under WS. We conclude that (1) adequate water supply improved the P mobilization from leaves and stems at maturity, which may have improved the seed yield; and (2) the high P acquisition efficiency is coordination to high P partition to seeds to produce a high seed yield under water- and P-limited conditions.


age ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Charles Hunt Walne ◽  
Annabeth Gaudin ◽  
W. Brien Henry ◽  
Kambham Raja Reddy

Sign in / Sign up

Export Citation Format

Share Document