Peck drilling of CFRP/titanium stacks: effect of tool wear on hole dimensional and geometrical accuracy

2019 ◽  
Vol 13 (5) ◽  
pp. 529-538 ◽  
Author(s):  
Umberto Prisco ◽  
Filomena Impero ◽  
F. Rubino
2021 ◽  
Author(s):  
Ramy Hussein ◽  
Ahmad Sadek ◽  
Mohamed Elbestawi ◽  
Helmi Attia

Abstract In this paper, the tool wear mechanism in low-frequency vibration-assisted drilling (LF-VAD) of carbon fiber reinforced polymer (CFRP)/Ti6Al4V stacks has been proposed using variably machining parameters. Based on the kinematics analysis, the effect of vibration amplitude on the chip formation, uncut chip thickness, chip radian, and axial velocity was presented. Subsequently, the effect of LF-VAD on the cutting temperature, tool wear, delamination, and geometrical accuracy was presented for different vibration amplitude. The LF-VAD with the utilization of minimum quantity lubricant (MQL) resulted in a successful drilling process of 50 holes, with a 63 % reduction of the cutting temperature. For the rake face, LF-VAD reduced the adhered height of Ti6Al4V by 80 % at low cutting speed and reduced the crater depth by 33 % at the high cutting speed. On the other hand, LF-VAD reduced the flank wear land by 53 %. Furthermore, LF-VAD showed a significant enhancement on the CFRP delamination, geometrical accuracy, and burr formation.


2021 ◽  
Vol 5 (2) ◽  
pp. 50
Author(s):  
Ramy Hussein ◽  
Ahmad Sadek ◽  
Mohamed A. Elbestawi ◽  
M. Helmi Attia

In this paper, the tool wear mechanisms for low-frequency vibration-assisted drilling (LF-VAD) of carbon fiber-reinforced polymer (CFRP)/Ti6Al4V stacks are investigated at various machining parameters. Based on the kinematics analysis, the effect of vibration amplitude on the chip formation, uncut chip thickness, chip radian, and axial velocity are examined. Subsequently, the effect of LF-VAD on the cutting temperature, tool wear, delamination, and geometrical accuracy was evaluated for different vibration amplitudes. The LF-VAD with the utilization of minimum quantity lubricant (MQL) resulted in a successful drilling process of 50 holes, with a 63% reduction in the cutting temperature. For the rake face, LF-VAD reduced the adhered height of Ti6Al4V by 80% at the low cutting speed and reduced the crater depth by 33% at the high cutting speed. On the other hand, LF-VAD reduced the flank wear land by 53%. Furthermore, LF-VAD showed a significant enhancement on the CFRP delamination, geometrical accuracy, and burr formation.


2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-541-Pr9-546 ◽  
Author(s):  
A. Molinari ◽  
M. Nouari

Author(s):  
Diego de Medeiros Barbosa ◽  
Leticia Helena Guimarães Alvarinho ◽  
Aristides Magri ◽  
Daniel Suyama

2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1489-1503
Author(s):  
Marwa Q. Ibraheem

In this present work use a genetic algorithm for the selection of cutting conditions in milling operation such as cutting speed, feed and depth of cut to investigate the optimal value and the effects of it on the material removal rate and tool wear. The material selected for this work was Ti-6Al-4V Alloy using H13A carbide as a cutting tool. Two objective functions have been adopted gives minimum tool wear and maximum material removal rate that is simultaneously optimized. Finally, it does conclude from the results that the optimal value of cutting speed is (1992.601m/min), depth of cut is (1.55mm) and feed is (148.203mm/rev) for the present work.


Author(s):  
Юрий Зубарев ◽  
Yuriy Zubarev ◽  
Александр Приемышев ◽  
Alexsandr Priyomyshev

Tool materials used for polymeric composite blank machining, kinds of tool material wear arising at machining these blanks, and also the impact of technological parameters upon tool wear are considered. The obtained results allow estimating the potentialities of physical models at polymeric composite blanks cutting.


Sign in / Sign up

Export Citation Format

Share Document