scholarly journals Investigation of the influence of varying tumbling strategies on a tumbling self-piercing riveting process

Author(s):  
S. Wituschek ◽  
F. Kappe ◽  
M. Lechner

AbstractThe increasing demands for the reduction of carbon dioxide emission require intensified efforts to increase resource efficiency. Especially in the mobility sector with large moving masses, resource savings can contribute enormously to the reduction of emissions. One possibility is to reduce the weight of the vehicles by using lightweight technologies. A frequently used method is the implementation of multi-material systems. These consist of dissimilar materials such as steel, aluminium or plastics. In the production of these systems, the joining of the different materials and geometries is a central challenge. Due to the increasing demands on the joints, the challenges for the joining processes itself are also increasing. Since conventional joining processes are rather rigid and can only react to a limited extent to disturbance variables or changing process variables, new methods and technologies are required. A widely used conventional joining method with these properties is self-piercing riveting. Because of the rigid tool combination and the fact that the rivet geometry that can be used is related to the tools, the joining of multi-material systems requires tool and rivet changes during the process. In order to extend the process window of joining with self-piercing rivet elements, the process is enhanced with a tumbling kinematic of the punch. The integration of tumbling results in a significant increase in the adjustable process parameters. This enables a higher material flow control in the joining process through a specific tumbling strategy. The materials investigated are a steel and an aluminium alloy, which differ significantly in their mechanical properties and have many applications in automotive engineering, especially for structural car body components. The steel material is a galvanized HCT590X+Z dual-phase steel, which is characterised by a low yield strength, combined with high tensile strength and a good hardening behaviour. The aluminium alloy is an EN AW-6014. The precipitation-hardening alloy consists of aluminium, magnesium and silicon with a high strength and energy absorption capability. The objective of this work is to obtain a fundamental knowledge of the new tumbling self-piercing riveting process. With different mechanical properties and different sheet thicknesses of the joining partners, the influences of these parameters on the tumbling strategy of the riveting process are analysed. Such a tumbling strategy is based on the tumbling angle, the tumbling onset and the tumbling kinematics. These parameters are investigated in the context of the work for selected combinations of multi-material systems consisting of HCT590X+Z and EN AW-6014. With the variation of the parameters, the versatility of the process can be investigated and influences of the tumbling on the self-piercing riveting process can be identified. To illustrate the results, force–displacement curves from the joining process of the individual joints are compared and the geometry of the rivet undercut and rivet heads are geometrically measured. Furthermore, micrographs allow the analysis of the characteristic joint parameters interlock, residual sheet thickness and end position of the rivet head.

Author(s):  
Josué Rafael Sánchez-Lerma ◽  
Luis Armando Torres-Rico ◽  
Héctor Huerta-Gámez ◽  
Ismael Ruiz-López

This paper proposes the development of the methodology to be carried out for the metal joining process through the GMAW welding process in the Fanuc LR Mate 200iD industrial robot. The parameters or properties were considered for the application to be as efficient as possible, such parameters as speed of application, characteristics of the filler material, gas to be used as welding protection. The GMAW welding process can be applied semiautomatically using a hand gun, in which the electrode is fed by a coil, or an automatic form that includes automated equipment or robots. The advantages and disadvantages of the GMAW welding process applied in a manual and automated way were commented. The mechanical properties of the materials to which said welding can be applied were investigated; The materials with which this type of welding can be worked are the high strength materials, which are used in the automotive industry, for the forming of sheet metal. To know the properties of the material, destructive tests were carried out on the test material to be used, as well as the mechanical properties of the welding.


1991 ◽  
Vol 7 (5) ◽  
pp. 447-451 ◽  
Author(s):  
R. Mächler ◽  
P. J. Uggowitzer ◽  
C. Solenthaler ◽  
R. M. Pedrazzoli ◽  
M. O. Speidel

2021 ◽  
Vol 883 ◽  
pp. 27-34
Author(s):  
Simon Wituschek ◽  
Michael Lechner

Due to increasing demands regarding ecological and economic specifications in vehicle design, the effort required for production is continuously increasing. One trend is the increased use of multi-material systems, which are characterised by the use of different materials such as high-strength steels or aluminium alloys. In addition to the varying mechanical properties of the components, an increased number of variants accompanied by different geometries is leading to increasing challenges on body construction. For the assembly and connection of the individual components, conventional joining methods reach their limitations. Therefore, new joining methods are necessary, which feature properties of versatility and can adapt to process and disturbance variables. One way of achieving tailored joints is to use a tumbling self-piercing riveting process. For the design of the process route, numerical investigations are necessary for which a characterisation of the friction properties is necessary. This paper therefore investigates the contact and friction conditions that occur in a tumbling self-piercing riveting process. The individual contacts between the process components are identified and based on this, suitable processes for the characterisation of the friction factors - and coefficients are selected and performed.


Author(s):  
Mohammad Mehdi Kasaei ◽  
Lucas FM da Silva

This research work presents a new joining process based on the hemming process for attaching sheets made from dissimilar materials with very different mechanical properties. The process is termed ‘hole hemming’ and consists in producing a mechanical interlock between pre-drilled holes which can be made anywhere on the sheets. The process is carried out in a two-stage operation including flanging the hole of an outer sheet and bending the flange over the hole of an inner sheet. First, the joining stages and the required tools are designed. Then, the joining of DP780 steel and AA6061-T6 aluminium alloy sheets, which are applied to manufacture lightweight structures in the automotive industries, is investigated using finite element analysis. Results show that the hole hemming process is able to successfully join these materials without fracture. The hole-hemmed joint withstood the maximum forces of 2.5 and 0.5 kN in single-lap shear and peel tests, respectively, and failed with hole bearing mode which is known as a gradual failure mode. The results demonstrate the applicability of the hole hemming process for joining dissimilar materials.


2019 ◽  
Vol 6 (8) ◽  
pp. 0865a3 ◽  
Author(s):  
S A Nithin Joseph Reddy ◽  
R Sathiskumar ◽  
K Gokul Kumar ◽  
S Jerome ◽  
A Vinoth Jebaraj ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 685
Author(s):  
Xiaoqing Jiang ◽  
Shujun Chen ◽  
Jinlong Gong ◽  
Zhenyang Lu

The present study aims to investigate the effect of microstructure and texture on mechanical properties of resistance spot welding of high strength steel 22MnB5 and 5A06 aluminium alloy as a function of welding parameters. The pseudo-nugget zones (NZs) at the steel side have undergone full recrystallisation with a fine-grained ferrite structure containing a small amount of retained austenite and a high hardness of approximately 500 HV, which is a 35% increase in hardness compared to the base material (BM) with fine lath martensitic structure. The NZs at the Al side contain both a recrystallisation texture and shear texture. Higher tensile shear strength with increasing weld time could be linked to the random texture at the Al side. The highest tensile shear strength was achieved at an intermetallic layer thickness of 4 mm.


2018 ◽  
Vol 877 ◽  
pp. 20-25
Author(s):  
P.K. Mandal

The cast Al-Zn-Mg 7000 alloy has become one of the most potential structural materials in many engineering fields such as aircraft body, automotive casting due to their high strength to weight ratio, strong age hardening ability, competitive weight savings, attractive mechanical properties and improvement of thermal properties. The cast aluminium alloy has been modified of surface layer through a solid-state technique is called friction stir process (FSP). But basic principle has been followed by friction stir welding (FSW). This process can be used to locally refine microstructures and eliminate casting defects in selected locations, where mechanical properties improvements can enhance component performance and service life. However, some specified process parameters have adopted during experimental works. Those parameters are tool rotation speed (720 rpm), plate traverse speed (80 mm/min), axial force (15 kN), and tool design (i.e., pin height 3.5 mm and pin diameter 3.0 mm), respectively. The main mechanism behind this process likely to axial force and frictional force acting between the tool shoulder and workpiece results in intense heat generation and plastically soften the process material. The specified ratio of rotational speed (720 rpm) to traverse speed (80 mm/min) is considered 9 as low heat input during FSP and its entails low Zn vaporization problem results as higher fracture toughness of aluminium alloy. It is well known that the stirred zone (SZ) consists of refine equiaxed grains produced due to dynamic recrystallization. FSP has been proven to innovatively enhancing of various properties such as formability, hardness and fracture toughness (32.60 MPa√m). The hardness and fracture toughness of double passes AC+FSP aluminium alloy had been investigated by performing Vicker’s hardness measurement and fracture toughness (KIC)(ASTM E-399 standard) tests. Detailed observations with optical microscopy, Vicker’s hardness measurement, SEM, TEM, and DTA analysis have conducted to analyse microstructure and fracture surfaces of double passes FSP aluminium alloy.


2015 ◽  
Vol 639 ◽  
pp. 469-476 ◽  
Author(s):  
Martin Müller ◽  
Ulrich Vierzigmann ◽  
Réjane Hörhold ◽  
Gerson Meschut ◽  
Marion Merklein

Global competition as well as social and scientific megatrends strongly influence the modern car manufacturing industry. One of the most important approaches is the implementation of lightweight constructions. Therefore, the usage of high performance materials with tailored properties gains importance. For safety-relevant components such as automotive passenger cells it is necessary to minimize deformation to reduce the risk of injury for the vehicle occupants during a car accident. Thus, hot stamped high-strength steels have been established. High-strength and low formability of this kind of materials represent new challenges for joining technologies. One possibility to join high-strength steels is the newly developed shear-clinching technology. Due to the use of a combined cutting and joining process, the connection of dissimilar materials with high difference in strength and formability can be achieved. Further research to ensure process reliability and to improve the strength of the joint is required. One possible approach for this is the numerical investigation of the material flow during the joining process. Therefore, the definition of process parameters for the finite element model is necessary. A big impact on the quality of the results has the accuracy of the used friction values. As established testing methods are not suitable for modeling the rather complex tribological system between the joining partners of the shear-clinching process, an innovative testing method is needed. Studies in the field of sheet-bulk metal forming already demonstrated the applicability of the ring compression test for sheet metals. This paper presents a concept for the adaption of the ring compression test to the specific needs of the investigated shear-clinching process. The numerical identification of the friction coefficients is validated by experimental data and first results are qualified by experimental and simulative shear-clinching joints.


Sign in / Sign up

Export Citation Format

Share Document