scholarly journals Using Oshima Splines to Produce Accurate Numerical Results and High Quality Graphical Output

2020 ◽  
Vol 14 (2) ◽  
pp. 399-413
Author(s):  
Setsuo Takato ◽  
José A. Vallejo
2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Ai-fan Ling

A heuristic algorithm based on VNS is proposed to solve the Max 3-cut and Max 3-section problems. By establishing a neighborhood structure of the Max 3-cut problem, we propose a local search algorithm and a variable neighborhood global search algorithm with two stochastic search steps to obtain the global solution. We give some numerical results and comparisons with the well-known 0.836-approximate algorithm. Numerical results show that the proposed heuristic algorithm can obtain efficiently the high-quality solutions and has the better numerical performance than the 0.836-approximate algorithm for the NP-Hard Max 3-cut and Max 3-section problems.


2006 ◽  
Vol 315-316 ◽  
pp. 164-168
Author(s):  
C. Guo ◽  
Qing Hong Sun

High speed and high quality precision are essential requirements of NC lathes in modern industry. Since the heat generated from headstock system is a major factor causing machining inaccuracy, in this work, the thermal 3D model of the headstock system is built and its thermal characteristics are investigated using FEM. From the comparison of the numerical results with the experiment results, it is found that the FEM predicted well the thermal characteristics of the headstock system and the model is reliable to further optimum design of the headstock system.


Author(s):  
Hongjun Li ◽  
Shun Chen ◽  
Harry F. Martin

An advanced CFD cede for turbine blade design and analysis has been developed. The non-skewed shifted periodic grids are used in the code. With this high quality grids, the accuracy of the solutions, particularly in loss predictions, are greatly improved. Extensive studies have been conducted for code verification and calibrations. Results show that the solutions are accurate and consistent. Numerical results are presented and compared with experimental data for different blade sections. Good agreements are observed between numerical prediction and test data for the cases compared.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jibum Kim

Existing mesh untangling algorithms are unable to untangle highly tangled meshes. In this study, we address this problem by proposing an iterative mesh untangling algorithm using edge flip. Our goal is to produce meshes with no inverted elements and good element qualities when inverted elements with poor element qualities are produced during mesh generation or mesh deformation process. Our proposed algorithm is composed of three steps: first, we iteratively perform edge flip; subsequently, optimization-based mesh untangling is conducted until all inverted elements are eliminated; finally, we perform mesh smoothing for generating high-quality meshes. Numerical results show that the proposed algorithm is able to successfully generate high-quality meshes with no inverted elements for highly tangled meshes.


1966 ◽  
Vol 24 ◽  
pp. 51-52
Author(s):  
E. K. Kharadze ◽  
R. A. Bartaya

The unique 70-cm meniscus-type telescope of the Abastumani Astrophysical Observatory supplied with two objective prisms and the seeing conditions characteristic at Mount Kanobili (Abastumani) permit us to obtain stellar spectra of a high quality. No additional design to improve the “climate” immediately around the telescope itself is being applied. The dispersions and photographic magnitude limits are 160 and 660Å/mm, and 12–13, respectively. The short-wave end of spectra reaches 3500–3400Å.


Author(s):  
R. L. Lyles ◽  
S. J. Rothman ◽  
W. Jäger

Standard techniques of electropolishing silver and silver alloys for electron microscopy in most instances have relied on various CN recipes. These methods have been characteristically unsatisfactory due to difficulties in obtaining large electron transparent areas, reproducible results, adequate solution lifetimes, and contamination free sample surfaces. In addition, there are the inherent health hazards associated with the use of CN solutions. Various attempts to develop noncyanic methods of electropolishing specimens for electron microscopy have not been successful in that the specimen quality problems encountered with the CN solutions have also existed in the previously proposed non-cyanic methods.The technique we describe allows us to jet polish high quality silver and silver alloy microscope specimens with consistant reproducibility and without the use of CN salts.The solution is similar to that suggested by Myschoyaev et al. It consists, in order of mixing, 115ml glacial actic acid (CH3CO2H, specific wt 1.04 g/ml), 43ml sulphuric acid (H2SO4, specific wt. g/ml), 350 ml anhydrous methyl alcohol, and 77 g thiourea (NH2CSNH2).


Author(s):  
A. V. Crewe ◽  
J. Wall ◽  
L. M. Welter

A scanning microscope using a field emission source has been described elsewhere. This microscope has now been improved by replacing the single magnetic lens with a high quality lens of the type described by Ruska. This lens has a focal length of 1 mm and a spherical aberration coefficient of 0.5 mm. The final spot size, and therefore the microscope resolution, is limited by the aberration of this lens to about 6 Å.The lens has been constructed very carefully, maintaining a tolerance of + 1 μ on all critical surfaces. The gun is prealigned on the lens to form a compact unit. The only mechanical adjustments are those which control the specimen and the tip positions. The microscope can be used in two modes. With the lens off and the gun focused on the specimen, the resolution is 250 Å over an undistorted field of view of 2 mm. With the lens on,the resolution is 20 Å or better over a field of view of 40 microns. The magnification can be accurately varied by attenuating the raster current.


Author(s):  
L. Mulestagno ◽  
J.C. Holzer ◽  
P. Fraundorf

Due to the wealth of information, both analytical and structural that can be obtained from it TEM always has been a favorite tool for the analysis of process-induced defects in semiconductor wafers. The only major disadvantage has always been, that the volume under study in the TEM is relatively small, making it difficult to locate low density defects, and sample preparation is a somewhat lengthy procedure. This problem has been somewhat alleviated by the availability of efficient low angle milling.Using a PIPS® variable angle ion -mill, manufactured by Gatan, we have been consistently obtaining planar specimens with a high quality thin area in excess of 5 × 104 μm2 in about half an hour (milling time), which has made it possible to locate defects at lower densities, or, for defects of relatively high density, obtain information which is statistically more significant (table 1).


Author(s):  
C. O. Jung ◽  
S. J. Krause ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structures have excellent potential for future use in radiation hardened and high speed integrated circuits. For device fabrication in SOI material a high quality superficial Si layer above a buried oxide layer is required. Recently, Celler et al. reported that post-implantation annealing of oxygen implanted SOI at very high temperatures would eliminate virtually all defects and precipiates in the superficial Si layer. In this work we are reporting on the effect of three different post implantation annealing cycles on the structure of oxygen implanted SOI samples which were implanted under the same conditions.


Author(s):  
Judith M. Brock ◽  
Max T. Otten ◽  
Marc. J.C. de Jong

A Field Emission Gun (FEG) on a TEM/STEM instrument provides a major improvement in performance relative to one equipped with a LaB6 emitter. The improvement is particularly notable for small-probe techniques: EDX and EELS microanalysis, convergent beam diffraction and scanning. The high brightness of the FEG (108 to 109 A/cm2srad), compared with that of LaB6 (∼106), makes it possible to achieve high probe currents (∼1 nA) in probes of about 1 nm, whilst the currents for similar probes with LaB6 are about 100 to 500x lower. Accordingly the small, high-intensity FEG probes make it possible, e.g., to analyse precipitates and monolayer amounts of segregation on grain boundaries in metals or ceramics (Fig. 1); obtain high-quality convergent beam patterns from heavily dislocated materials; reliably detect 1 nm immuno-gold labels in biological specimens; and perform EDX mapping at nm-scale resolution even in difficult specimens like biological tissue.The high brightness and small energy spread of the FEG also bring an advantage in high-resolution imaging by significantly improving both spatial and temporal coherence.


Sign in / Sign up

Export Citation Format

Share Document