Layer-by-layer of graphene oxide-chitosan assembly on PVA membrane surface for the pervaporation separation of water-isopropanol mixtures

2021 ◽  
Vol 38 (2) ◽  
pp. 411-421
Author(s):  
Shivshankar Chaudhari ◽  
KieYong Cho ◽  
SoHyan Joo ◽  
ByeongYun An ◽  
SongEun Lee ◽  
...  
2020 ◽  
Vol 59 (12) ◽  
pp. 125001
Author(s):  
Nan Ye ◽  
Satoka Ohnishi ◽  
Mitsuhiro Okada ◽  
Kazuto Hatakeyama ◽  
Kazuhiko Seki ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 70
Author(s):  
Maria Raposo ◽  
Carlota Xavier ◽  
Catarina Monteiro ◽  
Susana Silva ◽  
Orlando Frazão ◽  
...  

Thin graphene oxide (GO) film layers are being widely used as sensing layers in different types of electrical and optical sensor devices. GO layers are particularly popular because of their tuned interface reflectivity. The stability of GO layers is fundamental for sensor device reliability, particularly in complex aqueous environments such as wastewater. In this work, the stability of GO layers in layer-by-layer (LbL) films of polyethyleneimine (PEI) and GO was investigated. The results led to the following conclusions: PEI/GO films grow linearly with the number of bilayers as long as the adsorption time is kept constant; the adsorption kinetics of a GO layer follow the behavior of the adsorption of polyelectrolytes; and the interaction associated with the growth of these films is of the ionic type since the desorption activation energy has a value of 119 ± 17 kJ/mol. Therefore, it is possible to conclude that PEI/GO films are suitable for application in optical fiber sensor devices; most importantly, an optical fiber-based interrogation setup can easily be adapted to investigate in situ desorption via a thermally stimulated process. In addition, it is possible to draw inferences about film stability in solution in a fast, reliable way when compared with the traditional ones.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 75
Author(s):  
Duarte Carreira ◽  
Paulo A. Ribeiro ◽  
Maria Raposo ◽  
Susana Sério

It is currently of huge importance to find alternatives to fossil fuels to produce clean energy and to ensure the energy demands of modern society. In the present work, two types of hybrid solar cell devices were developed and characterized. The photoactive layers of the hybrid heterojunctions comprise poly (allylamine chloride) (PAH) and graphene oxide (GO) and TiO2 or ZnO films, which were deposited using the layer-by-layer technique and DC-reactive magnetron sputtering, respectively, onto fluorine-doped tin oxide (FTO)-coated glass substrates. Scanning electron microscopy evidenced a homogeneous inorganic layer, the surface morphology of which was dependent on the number of organic bilayers. The electrical characterization pointed out that FTO/(PAH/GO)50/TiO2/Al, FTO/(PAH/GO)30/ZnO/Al, and FTO/(PAH/GO)50/ZnO/Al architectures were the only ones to exhibit a diode behavior, and the last one experienced a decrease in current in a low-humidity environment. The (PAH/GO)20 impedance spectroscopy study further revealed the typical impedance of a parallel RC circuit for a dry environment, whereas in a humid environment, it approached the impedance of a series of three parallel RC circuits, indicating that water and oxygen contribute to other conduction processes. Finally, the achieved devices should be encapsulated to work successfully as solar cells.


Soft Matter ◽  
2021 ◽  
Author(s):  
Suprakash Samanta ◽  
Rashmi Ranjan Sahoo

Present study demonstrates a simple and multistep approach for the preparation of covalent functionalization of chemically prepared graphene oxide (GO) by branched polyethylenimine (PEI) through nucleophilic addition reaction to prepare...


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 13 ◽  
Author(s):  
Bin Zhang ◽  
Jaehyun Lee ◽  
Mincheol Kim ◽  
Naeeung Lee ◽  
Hyungdong Lee ◽  
...  

The macroscopic assembly of two-dimensional materials into a laminar structure has received considerable attention because it improves both the mechanical and chemical properties of the original materials. However, conventional manufacturing methods have certain limitations in that they require a high temperature process, use toxic solvents, and are considerably time consuming. Here, we present a new system for the self-assembly of layer-by-layer (LBL) graphene oxide (GO) via an electrohydrodynamic (EHD) jet printing technique. During printing, the orientation of GO flakes can be controlled by the velocity distribution of liquid jet and electric field-induced alignment spontaneously. Closely-packed GO patterns with an ordered laminar structure can be rapidly realized using an interfacial assembly process on the substrates. The surface roughness and electrical conductivity of the LBL structure were significantly improved compared with conventional dispensing methods. We further applied this technique to fabricate a reduced graphene oxide (r-GO)-based supercapacitor and a three-dimensional (3D) metallic grid hybrid ammonia sensor. We present the EHD-assisted assembly of laminar r-GO structures as a new platform for preparing high-performance energy storage devices and sensors.


2017 ◽  
Vol 5 (32) ◽  
pp. 16865-16872 ◽  
Author(s):  
Dongbo Yu ◽  
Liang Ge ◽  
Xinlai Wei ◽  
Bin Wu ◽  
Jin Ran ◽  
...  

A promising strategy is demonstrated for the syntheses of metal organic framework/graphene oxide hybrid films with highly ordered layer-by-layer architecture, and the derived hybrids exhibit remarkable energy storage performances.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1556
Author(s):  
Ivan C. C. Assunção ◽  
Susana Sério ◽  
Quirina Ferreira ◽  
Nykola C. Jones ◽  
Søren V. Hoffmann ◽  
...  

Layer-by-layer films of poly (allylamine hydrochloride) (PAH) and graphene oxide (GO) were characterized, looking at growth with the number of bilayers, morphology, and electrical properties. The PAH/GO films revealed a linear increase in absorbance with the increase in the number of deposited bilayers, allowing the determination that 10.7 ± 0.1 mg m−2 of GO is adsorbed per unit of area of each bilayer. GO absorption bands at 146, 210, 247 and 299 nm, assigned to π-π* and n-π* transitions in the aromatic ring (phenol) and of the carboxylic group, respectively, were characterized by vacuum ultraviolet spectroscopy. The morphological characterization of these films demonstrated that they are not completely uniform, with a bilayer thickness of 10.5 ± 0.7 nm. This study also revealed that the films are composed of GO and/or PAH/GO fibers and that GO is completely adsorbed on top of PAH. The electrical properties of the films reveal that PAH/GO films present a semiconductor behavior. In addition, a slight decrease in conduction was observed when films were prepared in the presence of visible light, likely due to the presence of oxygen and moisture that contributes to the damage of GO molecules.


Sign in / Sign up

Export Citation Format

Share Document