scholarly journals Clinical and Biological Features of Neuroendocrine Prostate Cancer

2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Yasutaka Yamada ◽  
Himisha Beltran
Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 692
Author(s):  
Roosa Kaarijärvi ◽  
Heidi Kaljunen ◽  
Kirsi Ketola

Neuroendocrine plasticity and treatment-induced neuroendocrine phenotypes have recently been proposed as important resistance mechanisms underlying prostate cancer progression. Treatment-induced neuroendocrine prostate cancer (t-NEPC) is highly aggressive subtype of castration-resistant prostate cancer which develops for one fifth of patients under prolonged androgen deprivation. In recent years, understanding of molecular features and phenotypic changes in neuroendocrine plasticity has been grown. However, there are still fundamental questions to be answered in this emerging research field, for example, why and how do the prostate cancer treatment-resistant cells acquire neuron-like phenotype. The advantages of the phenotypic change and the role of tumor microenvironment in controlling cellular plasticity and in the emergence of treatment-resistant aggressive forms of prostate cancer is mostly unknown. Here, we discuss the molecular and functional links between neurodevelopmental processes and treatment-induced neuroendocrine plasticity in prostate cancer progression and treatment resistance. We provide an overview of the emergence of neurite-like cells in neuroendocrine prostate cancer cells and whether the reported t-NEPC pathways and proteins relate to neurodevelopmental processes like neurogenesis and axonogenesis during the development of treatment resistance. We also discuss emerging novel therapeutic targets modulating neuroendocrine plasticity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Siyuan Cheng ◽  
Shu Yang ◽  
Yingli Shi ◽  
Runhua Shi ◽  
Yunshin Yeh ◽  
...  

AbstractHOX gene-encoded homeobox proteins control body patterning during embryonic development; the specific expression pattern of HOX genes may correspond to tissue identity. In this study, using RNAseq data of 1019 human cancer cell lines that originated from 24 different anatomic sites, we established HOX codes for various types of tissues. We applied these HOX codes to the transcriptomic profiles of prostate cancer (PCa) samples and found that the majority of prostate adenocarcinoma (AdPCa) samples sustained a prostate-specific HOX code whereas the majority of neuroendocrine prostate cancer (NEPCa) samples did not, which reflects the anaplastic nature of NEPCa. Also, our analysis showed that the NEPCa samples did not correlate well with the HOX codes of any other tissue types, indicating that NEPCa tumors lose their prostate identities but do not gain new tissue identities. Additionally, using immunohistochemical staining, we evaluated the prostatic expression of HOXB13, the most prominently changed HOX gene in NEPCa. We found that HOXB13 was expressed in both benign prostatic tissues and AdPCa but its expression was reduced or lost in NEPCa. Furthermore, we treated PCa cells with all trans retinoic acid (ATRA) and found that the reduced HOXB13 expression can be reverted. This suggests that ATRA is a potential therapeutic agent for the treatment of NEPCa tumors by reversing them to a more treatable AdPCa.


2008 ◽  
Vol 283 (28) ◽  
pp. 19872
Author(s):  
Florian Gackière ◽  
Gabriel Bidaux ◽  
Philippe Delcourt ◽  
Fabien Van Coppenolle ◽  
Maria Katsogiannou ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Divya Bhagirath ◽  
Michael Liston ◽  
Theresa Akoto ◽  
Byron Lui ◽  
Barbara A. Bensing ◽  
...  

AbstractNeuroendocrine prostate cancer (NEPC), a highly aggressive variant of castration-resistant prostate cancer (CRPC), often emerges upon treatment with androgen pathway inhibitors, via neuroendocrine differentiation. Currently, NEPC diagnosis is challenging as available markers are not sufficiently specific. Our objective was to identify novel, extracellular vesicles (EV)-based biomarkers for diagnosing NEPC. Towards this, we performed small RNA next generation sequencing in serum EVs isolated from a cohort of CRPC patients with adenocarcinoma characteristics (CRPC-Adeno) vs CRPC-NE and identified significant dysregulation of 182 known and 4 novel miRNAs. We employed machine learning algorithms to develop an ‘EV-miRNA classifier’ that could robustly stratify ‘CRPC-NE’ from ‘CRPC-Adeno’. Examination of protein repertoire of exosomes from NEPC cellular models by mass spectrometry identified thrombospondin 1 (TSP1) as a specific biomarker. In view of our results, we propose that a miRNA panel and TSP1 can be used as novel, non-invasive tools to identify NEPC and guide treatment decisions. In conclusion, our study identifies for the first time, novel non-invasive exosomal/extracellular vesicle based biomarkers for detecting neuroendocrine differentiation in advanced castration resistant prostate cancer patients with important translational implications in clinical management of these patients that is currently extremely challenging.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Vincenza Conteduca ◽  
Sheng-Yu Ku ◽  
Luisa Fernandez ◽  
Angel Dago-Rodriquez ◽  
Jerry Lee ◽  
...  

AbstractNeuroendocrine prostate cancer is an aggressive variant of prostate cancer that may arise de novo or develop from pre-existing prostate adenocarcinoma as a mechanism of treatment resistance. The combined loss of tumor suppressors RB1, TP53, and PTEN are frequent in NEPC but also present in a subset of prostate adenocarcinomas. Most clinical and preclinical studies support a trans-differentiation process, whereby NEPC arises clonally from a prostate adenocarcinoma precursor during the course of treatment resistance. Here we highlight a case of NEPC with significant intra-patient heterogeneity observed across metastases. We further demonstrate how single-cell genomic analysis of circulating tumor cells combined with a phenotypic evaluation of cellular diversity can be considered as a window into tumor heterogeneity in patients with advanced prostate cancer.


2021 ◽  
Author(s):  
Francisca Nunes de Almeida ◽  
Alessandro Vasciaveo ◽  
Min Zou ◽  
Matteo Di Bernardo ◽  
Andrea Califano ◽  
...  

2021 ◽  
Author(s):  
Shubhangi Agarwal ◽  
donna.peehl not provided ◽  
Renuka Sriram

This protocol describes the steps required for the successful implantation of small cell neuroendocrine prostate cancer patient-derived xenograft (PDX) cells in the bone. Bone is one of the most common sites for the development of metastatic prostate cancer and its study is important for evaluating the tumor characteristics and response to therapy. This protocol can be used for the implantation of any tumor cell line in the bone.


Sign in / Sign up

Export Citation Format

Share Document