Potential Application and Bactericidal Mechanism of Lactic Acid–Hydrogen Peroxide Consortium

2019 ◽  
Vol 189 (3) ◽  
pp. 822-833 ◽  
Author(s):  
Chenchen Zhang ◽  
Susu Zhang ◽  
Wei Liu ◽  
Tingting Guo ◽  
Ruixia Gu ◽  
...  
2009 ◽  
Vol 27 (No. 6) ◽  
pp. 454-462 ◽  
Author(s):  
M.A. Martínez-Téllez ◽  
F.J. Rodríguez-Leyva ◽  
I.E. Espinoza-Medina ◽  
I. Vargas-Arispuro ◽  
A.A. Gardea ◽  
...  

The absence of good agricultural and manufacturing practices in the production and postharvest handling of fresh produce, such as green asparagus or green onions increase the contamination risk by biological hazards like Salmonella. The objective of this work was to investigate the efficacy of chlorine (200 and 250 ppm), hydrogen peroxide (1.5% and 2%), and lactic acid (1.5% and 2%) sanitisers during different exposure times (40, 60, and 90 s) on the reduction of <i>Salmonella enterica</i> subspecie <i>enterica</i> serovar Typhimurium in inoculated fresh green asparagus and green onions. Washing with clean water only reduced < 1 log10 CFU/g in both vegetables. The most effective sanitiser evaluated for fresh green asparagus and green onions disinfection appeared to be 2% lactic acid reducing <i>Salmonella</i> growth close to 3 log<sub>10</sub> CFU/g. Hydrogen peroxide was the least effective agent for <i>Salmonella</i> Typhimurium reduction. No effect was observed of the exposure time of inoculated product to sanitiser up to 90 seconds. These results confirm that lactic acid could be used as an alternative for fresh green asparagus and green onions sanitation.


1997 ◽  
Vol 25 (1) ◽  
pp. 73-74 ◽  
Author(s):  
J. M. Rodríguez ◽  
M. I. Martínez ◽  
A. M. Suárez ◽  
J. M. Martínez ◽  
P. E. Hernández

2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P &gt; 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


2019 ◽  
Vol 64 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Mohamed G. Shehata ◽  
Ahmed N. Badr ◽  
Sobhy A. El Sohaimy ◽  
Dalal Asker ◽  
Tarek S. Awad

1998 ◽  
Vol 61 (7) ◽  
pp. 885-890 ◽  
Author(s):  
R. F. MCFEETERS

Cucumbers (Cucumis sativus) were microbiologically stable in cover liquid containing 300 ppm of added sodium metabisulfite (calculated as SO2), 20 mM calcium chloride, and HCl to give an equilibrated pH of 3.5. The sulfur(IV) oxoanions could be easily removed to nondetectable levels (&lt;3 ppm) by addition of an equimolar amount of hydrogen peroxide, which rapidly converted S(IV) primarily to sulfate ions. When sulfur(IV) oxoanions were removed from stored fresh cucumbers, 85% of the added metabisulfite could be accounted for by formation of sulfate ions. If cucumbers were heated before addition and removal of sulfur(IV) oxoanions, 96% of that added was converted to sulfate by hydrogen peroxide. Preservation of cucumbers in this way does not require fermentation, so addition of salt is not needed to select for lactic acid bacteria.


2017 ◽  
Vol 81 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Woo-Ju Kim ◽  
Ki-Ok Jeong ◽  
Dong-Hyun Kang

ABSTRACT Following sanitation interventions in food processing facilities, sublethally injured bacterial cells can remain on food contact surfaces. We investigated whether injured Salmonella Typhimurium cells can attach onto abiotic surfaces, which is the initial stage for further biofilm development. We utilized heat, UV, hydrogen peroxide, and lactic acid treatments, which are widely utilized by the food industry. Our results showed that heat, UV, and hydrogen peroxide did not effectively change populations of attached Salmonella Typhimurium. Cells treated with hydrogen peroxide had a slightly higher tendency to adhere to abiotic surfaces, although there was no significant difference between the populations of control and hydrogen peroxide–treated cells. However, lactic acid effectively reduced the number of Salmonella Typhimurium cells attached to stainless steel. We also compared physicochemical changes of Salmonella Typhimurium after application of lactic acid and used hydrogen peroxide as a positive control because only lactic acid showed a decreased tendency for attachment and hydrogen peroxide induced slightly higher numbers of attached bacteria cells. Extracellular polymeric substance produced by Salmonella Typhimurium was not detected in any treatment. Significant differences in hydrophobicity were not observed. Surface charges of cell membranes did not show relevant correlation with numbers of attached cells, whereas autoaggregation showed a positive correlation with attachment to stainless steel. Our results highlight that when lactic acid is applied in a food processing facility, it can effectively interfere with adhesion of injured Salmonella Typhimurium cells onto food contact surfaces.


Sign in / Sign up

Export Citation Format

Share Document