Bioconversion of Poplar Wood Hemicellulose Prehydrolysate to Microbial Oil Using Cryptococcus curvatus

2019 ◽  
Vol 189 (2) ◽  
pp. 626-637 ◽  
Author(s):  
Mahdieh Samavi ◽  
Bijaya Kumar Uprety ◽  
Sudip Rakshit
2020 ◽  
Vol 36 (4) ◽  
pp. 121-125
Author(s):  
Е.Е. Frantsuzova ◽  
A.A. Vetrova

Genes involved in the dibenzothiophene degradation have been identified in the genome of Gordonia alkanivorans 135. The efficiency of the degradation was evaluated by high-performance liquid chromatography after the strain cultivation in mineral sulfur-free medium with glucose (hexadecane) as a carbon source at a temperature of 28 °C. The results obtained in this work allow us to consider the Gordonia alkanivorans 135 strain as promising for development of bio technological method for microbial oil desulfurization. Gordonia, dibenzothiophene, biodegradation. This work was financially supported by the Russian Science Foundation (Grant no. 19-74-00097).


2021 ◽  
Vol 1885 (2) ◽  
pp. 022053
Author(s):  
Chaolu Yin ◽  
Xiang Zhang ◽  
Pingli Li ◽  
Fuxin Fu
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1885
Author(s):  
Xinyu Wu ◽  
Feng Yang ◽  
Jian Gan ◽  
Zhangqian Kong ◽  
Yan Wu

The silver particles were grown in situ on the surface of wood by the silver mirror method and modified with stearic acid to acquire a surface with superhydrophobic and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray energy spectroscopy (XPS) were used to analyze the reaction mechanism of the modification process. Scanning electron microscopy (SEM) and contact angle tests were used to characterize the wettability and surface morphology. A coating with a micro rough structure was successfully constructed by the modification of stearic acid, which imparted superhydrophobicity and antibacterial activity to poplar wood. The stability tests were performed to discuss the stability of its hydrophobic performance. The results showed that it has good mechanical properties, acid and alkali resistance, and UV stability. The durability tests demonstrated that the coating has the function of water resistance and fouling resistance and can maintain the stability of its hydrophobic properties under different temperatures of heat treatment.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Pratik Prashant Pawar ◽  
Annamma Anil Odaneth ◽  
Rajeshkumar Natwarlal Vadgama ◽  
Arvind Mallinath Lali

Abstract Background Recent trends in bioprocessing have underlined the significance of lignocellulosic biomass conversions for biofuel production. These conversions demand at least 90% energy upgradation of cellulosic sugars to generate renewable drop-in biofuel precursors (Heff/C ~ 2). Chemical methods fail to achieve this without substantial loss of carbon; whereas, oleaginous biological systems propose a greener upgradation route by producing oil from sugars with 30% theoretical yields. However, these oleaginous systems cannot compete with the commercial volumes of vegetable oils in terms of overall oil yields and productivities. One of the significant challenges in the commercial exploitation of these microbial oils lies in the inefficient recovery of the produced oil. This issue has been addressed using highly selective oil capturing agents (OCA), which allow a concomitant microbial oil production and in situ oil recovery process. Results Adsorbent-based oil capturing agents were employed for simultaneous in situ oil recovery in the fermentative production broths. Yarrowia lipolytica, a model oleaginous yeast, was milked incessantly for oil production over 380 h in a media comprising of glucose as a sole carbon and nutrient source. This was achieved by continuous online capture of extracellular oil from the aqueous media and also the cell surface, by fluidizing the fermentation broth over an adsorbent bed of oil capturing agents (OCA). A consistent oil yield of 0.33 g per g of glucose consumed, corresponding to theoretical oil yield over glucose, was achieved using this approach. While the incorporation of the OCA increased the oil content up to 89% with complete substrate consumptions, it also caused an overall process integration. Conclusion The nondisruptive oil capture mediated by an OCA helped in accomplishing a trade-off between microbial oil production and its recovery. This strategy helped in realizing theoretically efficient sugar-to-oil bioconversions in a continuous production process. The process, therefore, endorses a sustainable production of molecular drop-in equivalents through oleaginous yeasts, representing as an absolute microbial oil factory.


2021 ◽  
Vol 291 ◽  
pp. 123395
Author(s):  
Xianju Wang ◽  
Dengyun Tu ◽  
Chuanfu Chen ◽  
Qiaofang Zhou ◽  
Huixian Huang ◽  
...  

2020 ◽  
Vol 152 ◽  
pp. 112506 ◽  
Author(s):  
Mohammad Saber Bay ◽  
Keikhosro Karimi ◽  
Mohsen Nasr Esfahany ◽  
Rajeev Kumar

2011 ◽  
Vol 102 (19) ◽  
pp. 9020-9025 ◽  
Author(s):  
Jae-Young Kim ◽  
Eun-Jin Shin ◽  
In-Yong Eom ◽  
Keehoon Won ◽  
Yong Hwan Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document