scholarly journals Bioinformatics analysis of C3 in brain low-grade gliomas as potential therapeutic target and promoting immune cell infiltration

2022 ◽  
Vol 39 (2) ◽  
Author(s):  
Siyi Wu ◽  
Kaiting Miao ◽  
Lijing Wang ◽  
Yuanyuan Ma ◽  
Xiujuan Wu
2020 ◽  
Vol 7 ◽  
Author(s):  
Peng Feng ◽  
Zhenqing Li ◽  
Yuchen Li ◽  
Yuelin Zhang

The mutation of phosphatase and tensin homolog (PTEN) genes frequently occur in low-grade gliomas (LGGs) and are deeply associated with a poor prognosis and survival rate. In order to identify the crucial signaling pathways and genes associated with the PTEN mutation, we performed bioinformatics analysis on the RNA sequencing results, which were obtained from The Cancer Genome Atlas database. A total of 352 genes were identified as differentially expressed genes (DEGs). The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the DEGs were significantly enriched in categories associated with cell division and multiple metabolic progressions. The histological stage was significantly associated with PTEN expression levels. In addition, the PTEN mutation was associated with an abundance of B cells, neutrophils, macrophages, dendritic cells, and CD8+ T cells during tumor infiltration. The results showed that patients with LGGs harboring the PTEN mutation had a poor prognosis and more serious immune cell infiltration occurred depending on the mRNA expression level. These results demonstrated that multiple genes and signaling pathways play a key role in LGG from low grade to high grade, and are associated with PTEN mutations. In this study, we outlined an approach to assess the influence of PTEN mutations on prognosis, overall survival, and messenger RNA (mRNA) expression. Our results provided alternative strategies for the personalized treatment of patients with LGGs harboring the PTEN mutation.


2021 ◽  
Author(s):  
Xiujuan wu ◽  
Siyi Wu ◽  
Kaiting Miao ◽  
Lijing Wang ◽  
Yuanyuan Ma

Abstract Background Low grade gliomas is the malignant nervous tumor with distinct biological and clinical characteristics. Despite advances in diagnostic and therapeutic methods, how to significantly elongate the survival of low grade gliomas is still the challenge. Complement 3, as the critical component in the innate immune system, play an essential role in local immune response and participated into the regulation of the epithelial-mesenchymal transition and tumor microenvironment. Methods In this study, we systematically determined the expression levels of C3 in low grade gliomas using various public databases. Then, we further identified the impact of C3 expression on immune cell infiltration compared to normal tissue, indicating the effect of cellular microenvironment on overall survival of LGG patients. Results We obtained transcriptional and survival of C3 in LGG from GEPIA and cBioportal database, and the differentially expressed genes were obtained. By performing the analysis of GO and protein-protein interaction network, we have identified the top-ranked 10 hub genes, which are highly associated with regulation of cell cycle. The gene set enrichment analysis demonstrated that overexpression of C3 in LGG patient is positively correlated with regulation of cell cycle. Finally, the immune cell infiltration of C3 in LGG patients was employed and clearly showed that higher neutrophil infiltration can worsen the survival of LGG patients with higher C3 expression. These results were confirmed by the Human Protein Atlas database, in which expression level of C3 protein in gliomas patients always higher. Conclusions This investigation implied that C3 can be as the potential targets of precise therapy for patient with low grade gliomas.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Qingli Quan ◽  
Xinxin Xiong ◽  
Shanyun Wu ◽  
Meixing Yu

Autophagy plays an important role in cancer. Many studies have demonstrated that autophagy-related genes (ARGs) can act as a prognostic signature for some cancers, but little has been known in low-grade gliomas (LGG). In our study, we aimed to establish a prognostical model based on ARGs and find prognostic risk-related key genes in LGG. In the present study, a prognostic signature was constructed based on a total of 8 ARGs (MAPK8IP1, EEF2, GRID2, BIRC5, DLC1, NAMPT, GRID1, and TP73). It was revealed that the higher the risk score, the worse was the prognosis. Time-dependent ROC analysis showed that the risk score could precisely predict the prognosis of LGG patients. Additionally, four key genes (TGFβ2, SERPING1, SERPINE1, and TIMP1) were identified and found significantly associated with OS of LGG patients. Besides, they were also discovered to be strongly related to six types of immune cells which infiltrated in LGG tumor. Taken together, the present study demonstrated the promising potential of the ARG risk score formula as an independent factor for LGG prediction. It also provided the autophagy-related signature of prognosis and potential therapeutic targets for the treatment of LGG.


2021 ◽  
Author(s):  
Zitong Feng ◽  
Jingge Qu ◽  
Xiao Liu ◽  
Jinghui Liang ◽  
Yongmeng Li ◽  
...  

Abstract Esophageal squamous cell carcinoma (ESCC) is a life-threatening thoracic tumor with a poor prognosis. Identifying the best-targeted therapy, appropriate biomarkers and individual treatment for patients with ESCC remains a significant challenge. The present study aimed to elucidate key candidate genes and immune cell infiltration characteristics in ESCC by integrated bioinformatics analysis. We downloaded nine gene expression datasets from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between ESCC tissues and normal tissues in each dataset were identified by the “limma” R package, and a total of 152 robust DEGs were identified by robust rank aggregation (RRA) algorithm. Functional enrichment analyses of the robust DEGs showed that these genes were significantly associated with extracellular matrix related process. Immune cell infiltration analysis was also conducted by CIBERSORT algorithm. We found that M0 and M1 macrophages were increased dramatically in ESCC while M2 macrophages decreased. Nine hub genes were picked out from a protein-protein interaction (PPI) network used by the CytoHubba plugin in Cytoscape. According to the receiver operating characteristic (ROC) curves and Kaplan-Meier survival analysis, the genes PLAU, SPP1 and VCAN had high diagnostic and prognostic values for ESCC patients. Based on univariate and multivariate regression analyses, seven genes (IL18, PLAU, ANO1, SLCO1B3, CST1, NELL2 and MAGEA11) from the robust DEGs were used to construct a good prognostic model. A nomogram that incorporates seven genes signature was established to develop a quantitative method for ESCC prognosis. Our results might provide aid for exploring potential therapeutic targets and prognosis evaluation in ESCC.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Sanket Patel ◽  
Isha Dhande ◽  
Elizabeth Alana Gray ◽  
Quaisar Ali ◽  
Tahir Hussain

AbstractImmune cell infiltration plays a central role in mediating endotoxemic acute kidney injury (AKI). Recently, we have reported the anti-inflammatory and reno-protective role of angiotensin-II type-2 receptor (AT2R) activation under chronic low-grade inflammatory condition in the obese Zucker rat model. However, the role of AT2R activation in preventing lipopolysaccharide (LPS)-induced early infiltration of immune cells, inflammation and AKI is not known. Mice were treated with AT2R agonist C21 (0.3 mg/kg), with and without AT2R antagonist PD123319 (5 mg/kg) prior to or concurrently with LPS (5 mg/kg) challenge. Prior-treatment with C21, but not concurrent treatment, significantly prevented the LPS-induced renal infiltration of CD11b+ immune cells, increase in the levels of circulating and/or renal chemotactic cytokines, particularly interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) and markers of renal dysfunction (blood urea nitrogen and albuminuria), while preserving anti-inflammatory interleukin-10 (IL-10) production. Moreover, C21 treatment in the absence of LPS increased renal and circulating IL-10 levels. To investigate the role of IL-10 in a cross-talk between epithelial cells and monocytes, we performed in vitro conditioned media (CM) studies in human kidney proximal tubular epithelial (HK-2) cells and macrophages (differentiated human monocytes, THP-1 cells). These studies revealed that the conditioned-media derived from the C21-treated HK-2 cells reduced LPS-induced THP-1 tumor necrosis factor-α (TNF-α) production via IL-10 originating from HK-2 cells. Our findings suggest that prior activation of AT2R is prophylactic in preventing LPS-induced renal immune cell infiltration and dysfunction, possibly via IL-10 pathway.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii413-iii413
Author(s):  
Alexander C Sommerkamp ◽  
Pengbo Sun ◽  
Annika K Wefers ◽  
Britta Ismer ◽  
Kathrin Schramm ◽  
...  

Abstract Pediatric low-grade gliomas (pLGGs) are the most common brain tumors in children. Despite recent advances in the molecular characterization of this heterogeneous set of tumors, the separation of specific tumor types is still not fully established. Pilocytic astrocytoma (PA; WHO grade I) and pleomorphic xanthoastrocytoma (PXA; WHO grade II) are two pLGG types that can be difficult to distinguish based on histology alone. Even though their clinical course is different, they are often grouped as ‘pLGG’ in clinical trials (and therefore treated similarly). Based on a cohort of 89 human pediatric tumor samples, we show that PAs and PXAs have clearly distinct methylation and transcriptome profiles. The difference in gene expression is mainly caused by cell cycle- and development-associated genes, suggesting a key difference in the regulatory circuits involved in tumor growth. In addition to BRAF V600E, we found NTRK fusions and a previously unknown EGFR:BRAF fusion as mutually exclusive driving events in PXAs. Both tumor types show marked signs of immune cell infiltration, but with significant qualitative differences, which might represent therapeutic vulnerabilities. To pave the way for further research on PA and PXA, we developed corresponding mouse models using the virus-based RCAS system, which allows introduction of an oncogenic driver into immunocompetent mice for molecular and preclinical research. The murine tumors do not only histologically resemble their human counterparts but also show a similar growth behavior. Expression analysis revealed that the murine PXAs have a stronger gene signature of proliferation and immune cell infiltration compared to PAs.


Sign in / Sign up

Export Citation Format

Share Document