Neuroprotective Effect of Fisetin Against Amyloid-Beta-Induced Cognitive/Synaptic Dysfunction, Neuroinflammation, and Neurodegeneration in Adult Mice

2016 ◽  
Vol 54 (3) ◽  
pp. 2269-2285 ◽  
Author(s):  
Ashfaq Ahmad ◽  
Tahir Ali ◽  
Hyun Young Park ◽  
Haroon Badshah ◽  
Shafiq Ur Rehman ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Natalie Baruch-Eliyahu ◽  
Vladislav Rud ◽  
Alex Braiman ◽  
Esther Priel

AbstractThe telomerase reverse transcriptase protein, TERT, is expressed in the adult brain and its exogenic expression protects neurons from oxidative stress and from the cytotoxicity of amyloid beta (Aβ). We previously showed that telomerase increasing compounds (AGS) protected neurons from oxidative stress. Therefore, we suggest that increasing TERT by AGS may protect neurons from the Aβ-induced neurotoxicity by influencing genes and factors that participate in neuronal survival and plasticity. Here we used a primary hippocampal cell culture exposed to aggregated Aβ and hippocampi from adult mice. AGS treatment transiently increased TERT gene expression in hippocampal primary cell cultures in the presence or absence of Aβ and protected neurons from Aβ induced neuronal degradation. An increase in the expression of Growth associated protein 43 (GAP43), and Feminizing locus on X-3 genes (NeuN), in the presence or absence of Aβ, and Synaptophysin (SYP) in the presence of Aβ was observed. GAP43, NeuN, SYP, Neurotrophic factors (NGF, BDNF), beta-catenin and cyclin-D1 expression were increased in the hippocampus of AGS treated mice. This data suggests that increasing TERT by pharmaceutical compounds partially exerts its neuroprotective effect by enhancing the expression of neurotrophic factors and neuronal plasticity genes in a mechanism that involved Wnt/beta-catenin pathway.


2020 ◽  
Vol 11 (5) ◽  
pp. 4707-4718 ◽  
Author(s):  
Yu Wu ◽  
Yu-gang Shi ◽  
Xiao-liang Zheng ◽  
Ya-li Dang ◽  
Chen-min Zhu ◽  
...  

Ferulic acid (FA) has been shown to have a neuroprotective effect on Alzheimer's disease induced by amyloid-beta (Aβ) neurotoxicity.


2017 ◽  
Vol 15 (3) ◽  
pp. 200-209 ◽  
Author(s):  
Shehong Zhang ◽  
Hongyu Xie ◽  
Yuyang Wang ◽  
Dake Li ◽  
Liang Du ◽  
...  

Several studies have demonstrated the neuroprotective effect of enriched environment (EE) and its positive effect on cognitive performance in pathological conditions, such as neurodegenerative diseases, epilepsy, and traumatic brain injury. However, the immunomodulatory effect of EE in normal rodents is not well characterized. To assess the immunomodulatory effect of EE, we randomly assigned normal mice to EE housing or standard environmental (SE) housing for 3 weeks. Behavioral alterations were evaluated by open field, fear conditioning, and Morris water maze tests. Immunohistochemical staining was performed to assess the expression of behavioral-related proteins, and enzyme-linked immunosorbent assay (ELISA) for brain-derived neurotrophic factor (BDNF), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) was also performed. We also measured the levels of RIP1 and RIP3 proteins using western blotting. EE significantly improved the cognitive performance which was associated with the increased expressions of BDNF, ionized calcium-binding adapter molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP); EE did not influence any morphological changes in the brain tissue in adult mice; however, increased resistance to inflammation induced by TNF-α was observed. These findings indicate that EE can positively influence cognitive and behavioral performance in healthy adult mice by exerting environ-immuno effect on neural function.


2012 ◽  
Vol 35 (11) ◽  
pp. 1989-1998 ◽  
Author(s):  
Bo Ra Ahn ◽  
Hye Eun Moon ◽  
Hyeung Rak Kim ◽  
Hyun Ah Jung ◽  
Jae Sue Choi

2014 ◽  
Vol 92 (6) ◽  
pp. 429-437 ◽  
Author(s):  
Hyo Geun Kim ◽  
Ji-Young Kim ◽  
Wei-Wan Whang ◽  
Myung Sook Oh

Microglia-mediated inflammation is a major pathological mechanism contributing to Alzheimer’s disease (AD), and has been proposed as a potential therapeutic target. Chunghyuldan (CHD; Qingxue-dan in Chinese and Daio-Orengedokuto in Japanese) possesses wide-ranging biological effects, including anti-hyperlipidemic, anti-stroke, anti-inflammatory, and antioxidant activities that could affect neurological functions. In this study, we examined the effects of CHD in in-vitro and in-vivo models of AD induced by the oligomeric form of amyloid-beta (Aβ oligomer), which acts directly on microglia-mediated neuroinflammation to result in neuronal damage and cognitive impairment. CHD at 0.1–100 μg·mL−1 significantly protected PC12 cells and rat primary hippocampal cells from Aβ oligomer1–42 toxicity. In addition, CHD at 1–10 μg·mL−1 inhibited Aβ oligomer1–42 induced production of nitric oxide, tumor necrosis factor-α, and interleukin-1β in microglial cells. In an in-vivo AD model, administration of CHD (50 mg·(kg body mass)−1, for 5 days, per oral) inhibited the activation of astrocytes and microglia in the dentate gyrus and neuronal damage in the CA1 of the ipsilateral hippocampus. Moreover, CHD ameliorated cognitive impairment induced by Aβ oligomer1–42 toxicity. These results demonstrate the neuroprotective effects of CHD through inhibition of microglia-mediated neuroinflammation in in-vitro and in-vivo AD-like models induced by Aβ oligomer1–42 toxicity.


2016 ◽  
Vol 37 (4) ◽  
pp. 1338-1348 ◽  
Author(s):  
Lin Kooi Ong ◽  
Zidan Zhao ◽  
Murielle Kluge ◽  
Frederick R Walker ◽  
Michael Nilsson

Exposure to severe stress following stroke is recognised to complicate the recovery process. We have identified that stress can exacerbate the severity of post-stroke secondary neurodegeneration in the thalamus. In this study, we investigated whether exposure to stress could influence the accumulation of the neurotoxic protein Amyloid-β. Using an experimental model of focal cortical ischemia in adult mice combined with exposure to chronic restraint stress, we examined changes within the contra- and ipsilateral thalamus at six weeks post-stroke using Western blotting and immunohistochemical approaches. Western blotting analysis indicated that stroke was associated with a significant enhancement of the 25 and 50 kDa oligomers within the ipsilateral hemisphere and the 20 kDa oligomer within the contralateral hemisphere. Stroked animals exposed to stress exhibited an additional increase in multiple forms of Amyloid-beta oligomers. Immunohistochemistry analysis confirmed that stroke was associated with a significant accumulation of Amyloid-beta within the thalami of both hemispheres, an effect that was exacerbated in stroke animals exposed to stress. Given that Amyloid-beta oligomers, most notably the 30–40 and 50 kDa oligomers, are recognised to correlate with accelerated cognitive decline, our results suggest that monitoring stress levels in patients recovering from stroke may merit consideration in the future.


Sign in / Sign up

Export Citation Format

Share Document