scholarly journals The biological Maxwell's demons: exploring ideas about the information processing in biological systems

Author(s):  
Eduardo Mizraji

AbstractThis work is based on ideas supported by some of the biologists who discovered foundational facts of twentieth-century biology and who argued that Maxwell's demons are physically implemented by biological devices. In particular, JBS Haldane first, and later J. Monod, A, Lwoff and F. Jacob argued that enzymes and molecular receptors implemented Maxwell's demons that operate in systems far removed from thermodynamic equilibrium and that were responsible for creating the biological order. Later, these ideas were extended to other biological processes. In this article, we argue that these biological Maxwell's demons (BMD) are systems that have information processing capabilities that allow them to select their inputs and direct their outputs toward targets. In this context, we propose the idea that these BMD are information catalysts in which the processed information has broad thermodynamic consequences.

1993 ◽  
Vol 67 (1) ◽  
pp. 1-51 ◽  
Author(s):  
JoAnne Yates

Punched-card tabulating equipment, an important commercial predecessor of the computer, was used for processing large amounts of data in many business firms during die first half of the twentieth century. Life insurance was an information-intensive business dependent on firms' abilities to manage large quantities of data. This article examines both the role that tabulating machinery played in shaping insurance firms' business processes and the simultaneous role that Ufe insurance as a user industry played in shaping the development of tabulating technology between 1890 and 1950. The ongoing interaction between the Ufe insurance and tabulating industries shaped both in significant ways, setting the stage for continued interaction between the two industries during the transition to computers beginning at mid-century.


2017 ◽  
Vol 1 (3) ◽  
pp. 241-243
Author(s):  
Jeffrey Skolnick

As is typical of contemporary cutting-edge interdisciplinary fields, computational biology touches and impacts many disciplines ranging from fundamental studies in the areas of genomics, proteomics transcriptomics, lipidomics to practical applications such as personalized medicine, drug discovery, and synthetic biology. This editorial examines the multifaceted role computational biology plays. Using the tools of deep learning, it can make powerful predictions of many biological variables, which may not provide a deep understanding of what factors contribute to the phenomena. Alternatively, it can provide the how and the why of biological processes. Most importantly, it can help guide and interpret what experiments and biological systems to study.


2019 ◽  
Vol 374 (1774) ◽  
pp. 20180370 ◽  
Author(s):  
Salva Duran-Nebreda ◽  
George W. Bassel

Information processing and storage underpins many biological processes of vital importance to organism survival. Like animals, plants also acquire, store and process environmental information relevant to their fitness, and this is particularly evident in their decision-making. The control of plant organ growth and timing of their developmental transitions are carefully orchestrated by the collective action of many connected computing agents, the cells, in what could be addressed as distributed computation. Here, we discuss some examples of biological information processing in plants, with special interest in the connection to formal computational models drawn from theoretical frameworks. Research into biological processes with a computational perspective may yield new insights and provide a general framework for information processing across different substrates.This article is part of the theme issue ‘Liquid brains, solid brains: How distributed cognitive architectures process information’.


2015 ◽  
Vol 32 (11) ◽  
pp. 110501 ◽  
Author(s):  
Chi Zhang ◽  
Li-Wei Liu ◽  
Long-Fei Wang ◽  
Yuan Yue ◽  
Lian-Chun Yu

1973 ◽  
Vol 6 (4) ◽  
pp. 341-387 ◽  
Author(s):  
Jacob N. Israelachvili

The theory of van der Waals forces has now developed to a stage where it constitutes a powerful tool in theoretical investigations of many biological systems. In this review we shall consider both the theoretical and conceptual aspects of these forces with the emphasis on the way they may be involved in various biological processes.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Teresa Rayon ◽  
James Briscoe

Time is inherent to biological processes. It determines the order of events and the speed at which they take place. However, we still need to refine approaches to measure the course of time in biological systems and understand what controls the pace of development. Here, we argue that the comparison of biological processes across species provides molecular insight into the timekeeping mechanisms in biology. We discuss recent findings and the open questions in the field and highlight the use of in vitro systems as tools to investigate cell-autonomous control as well as the coordination of temporal mechanisms within tissues. Further, we discuss the relevance of studying tempo for tissue transplantation, homeostasis and lifespan.


2007 ◽  
Vol 7 (12) ◽  
pp. 4248-4253 ◽  
Author(s):  
Ramana M. Pidaparti ◽  
David Primeaux ◽  
Brandon Saunders

Many natural and biological systems are formed by the process of molecular self-assembly. Molecular self-assembly is defined as the spontaneous organization of molecules under thermodynamic equilibrium conditions into structurally well defined and rather stable arrangements. In this paper, we developed a novel computational methodology to investigate the self-assembly process of simple 1-D structures representing protein monomers into long filaments, rings, pyramids, bundles, etc. Based on the preliminary results obtained, the methodology was extended to mimic the microtubule self-assembly, which occurs in all eukaryotic cells.


Sign in / Sign up

Export Citation Format

Share Document