scholarly journals Cross-species comparisons and in vitro models to study tempo in development and homeostasis

2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Teresa Rayon ◽  
James Briscoe

Time is inherent to biological processes. It determines the order of events and the speed at which they take place. However, we still need to refine approaches to measure the course of time in biological systems and understand what controls the pace of development. Here, we argue that the comparison of biological processes across species provides molecular insight into the timekeeping mechanisms in biology. We discuss recent findings and the open questions in the field and highlight the use of in vitro systems as tools to investigate cell-autonomous control as well as the coordination of temporal mechanisms within tissues. Further, we discuss the relevance of studying tempo for tissue transplantation, homeostasis and lifespan.

2016 ◽  
Vol 5 (2) ◽  
pp. 237-243
Author(s):  
Marisa Rio ◽  
Sharanya Bola ◽  
Richard H. W. Funk ◽  
Gerald Gerlach

Abstract. Endogenous electric fields (EFs) play an important role in many biological processes. In order to gain an insight into these biological phenomena, externally applied electric fields are used to study cellular responses. In this work, we report the construction and fabrication of a direct current (DC)-electrically stimulated microfluidic biochip and its validation with murine photoreceptor-derived 661 W cells. The presented device has the particularity of offering a non-homogeneous EF environment that best resembles the endogenous electric fields in vitro. The fabrication process is relatively easy, namely by photolithography and soft lithography techniques and, furthermore, it enables live-cell imaging under an inverted microscope. First experimental results reveal cathodal directional cell migration upon applied DC EFs. In summary, the microfluidic biochip has proven biocompatibility and suitability for cellular electrotaxis experiments in non-homogeneous DC electric fields.


2021 ◽  
Vol 22 (21) ◽  
pp. 11390
Author(s):  
Anne Strohbach ◽  
Raila Busch

The therapeutic efficacy of a cardiovascular device after implantation is highly dependent on the host-initiated complement and coagulation cascade. Both can eventually trigger thrombosis and inflammation. Therefore, understanding these initial responses of the body is of great importance for newly developed biomaterials. Subtle modulation of the associated biological processes could optimize clinical outcomes. However, our failure to produce truly blood compatible materials may reflect our inability to properly understand the mechanisms of thrombosis and inflammation associated with biomaterials. In vitro models mimicking these processes provide valuable insights into the mechanisms of biomaterial-induced complement activation and coagulation. Here, we review (i) the influence of biomaterials on complement and coagulation cascades, (ii) the significance of complement-coagulation interactions for the clinical success of cardiovascular implants, (iii) the modulation of complement activation by surface modifications, and (iv) in vitro testing strategies.


Author(s):  
Antonia Molloy ◽  
James Harrison ◽  
John McGrath ◽  
Zachary Owen ◽  
Clive Smith ◽  
...  

Tuberculosis (TB) remains a global healthcare crisis with an estimated 10 million new cases and 1.4 million deaths per year TB is caused by infection with the major human pathogen Mycobacte-rium tuberculosis, which is difficult to rapidly diagnose and treat. There is an urgent need for new methods of diagnosis, sufficient in vitro models which capably mimic all physiological condi-tions of the infection, and high-throughput drug screening platforms. Microfluidic-based tech-niques provide single-cell analysis which reduces experimental time, the cost of reagents, and have been extremely useful for gaining insight into monitoring microorganisms. This review out-lines the field of microfluidics and discusses the use of this novel technique so far in M. tuberculo-sis diagnostics, research methods, and drug discovery platforms. The practices of microfluidics have promising future applications for diagnosing and treating TB.


2021 ◽  
Vol 9 (11) ◽  
pp. 2330
Author(s):  
Antonia Molloy ◽  
James Harrison ◽  
John S. McGrath ◽  
Zachary Owen ◽  
Clive Smith ◽  
...  

Tuberculosis (TB) remains a global healthcare crisis, with an estimated 5.8 million new cases and 1.5 million deaths in 2020. TB is caused by infection with the major human pathogen Mycobacterium tuberculosis, which is difficult to rapidly diagnose and treat. There is an urgent need for new methods of diagnosis, sufficient in vitro models that capably mimic all physiological conditions of the infection, and high-throughput drug screening platforms. Microfluidic-based techniques provide single-cell analysis which reduces experimental time and the cost of reagents, and have been extremely useful for gaining insight into monitoring microorganisms. This review outlines the field of microfluidics and discusses the use of this novel technique so far in M. tuberculosis diagnostics, research methods, and drug discovery platforms. The practices of microfluidics have promising future applications for diagnosing and treating TB.


Author(s):  
Gianluca Ciardelli

3D tissue-engineered models are promising tools in the screening and evaluation of drugs and therapies as well as in the investigation of the molecular mechanisms involved in disease onset and progression. In this context, we describe our efforts in soft tissue replication, to design in vitro models that have the potential to provide better insight into the development of ageing process and related pathologies, with particular reference to the cardiovascular field.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1102
Author(s):  
Róisín M. Owens

In vitro models of biological systems are essential for our understanding of biological systems. [...]


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Alexandra Zirra ◽  
Sarah Wiethoff ◽  
Rickie Patani

Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs) became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine.


2018 ◽  
Author(s):  
Ankur Kulshreshtha ◽  
Swati Singh ◽  
Kritika Khanna ◽  
Anurag Agrawal ◽  
Balaram Ghosh

AbstractDiscovery of exosomes as modulator of cellular communication has added a new dimension to our understanding of biological processes. Exosomes influence the biological systems by mediating trans-communication across tissues and cells, which has important implication for health and disease. Identification of strategies for exosome modulation may pave the way towards better understanding of exosome biology and development of novel therapeutics. In absence of well-characterized modulators of exosome biogenesis, an alternative option is to target pathways generating important exosomal components. Cholesterol represents one such essential component required for exosomal biogenesis. We initiated this study to test the hypothesis that owing to its cholesterol lowering effect, simvastatin, a HMG CoA inhibitor, might be able to alter exosome formation and secretion. Using previously established protocols for detecting secreted exosomes in biological fluids, simvastatin was tested for its effect on exosome secretion under various in-vitro and in-vivo settings. Murine model of AAI was used for further validation of our findings. Utilizing aforementioned systems, we demonstrate exosome-lowering potential of simvastatin in various in-vivo and in-vitro models, of AAI and atherosclerosis. We believe that the knowledge acquired in this study holds potential for extension to other exosome dominated pathologies and model systems.


1995 ◽  
Vol 9 (3) ◽  
pp. 194-197 ◽  
Author(s):  
J. Arends

Despite the advantages of in situ model studies, in vitro models are most important to provide insight into the mechanism of dental caries, the mechanisms of fluoride action, and profile screening. In this reaction paper following Dr. White's review, the emphasis is, first, on the role of mobile fluoride (FL) in fluoride efficacy, the formation of "CaF2-like" material as fluoride reaction product, and on fluoride reaction product localization. Second, mineral assessment techniques are discussed. Finally, the main differences between caries lesion formation in vitro and in situ are considered.


2010 ◽  
Vol 31 (2) ◽  
pp. 693-705 ◽  
Author(s):  
Abraham Al Ahmad ◽  
Carole Bürgi Taboada ◽  
Max Gassmann ◽  
Omolara O Ogunshola

Understanding regulation of blood–brain barrier (BBB) is crucial to reduce/prevent its disruption during injury. As high brain complexity makes interpretation of in vivo data challenging, BBB studies are frequently performed using simplified in vitro models. However, many models fail to address the three-dimensional (3D) cellular interactions that occur in vivo, an important feature that may explain discrepancies in translation of in vitro data to the in vivo situation. We have designed and characterized an innovative 3D model that reproduces morphological and functional characteristics of the BBB in vivo and used it to investigate cellular interactions and contribution of astrocytes and pericytes to BBB development. Our model shows that both astrocytes and pericytes significantly suppress endothelial proliferation. In contrast, differential effects on tubulogenesis were observed with astrocytes reducing the number of tubes formed but increasing diameters and length, whereas pericytes had the opposite effect. Pericytes also induce proper localization of barrier proteins, lumen polarization, and functional activity of ATP-binding cassette (ABC) transporters similar to astrocytes, but the presence of both cells is required to maintain optimal barrier characteristics during hypoxic exposure. This model is simple, dynamic, and convenient to study many aspects of BBB function and represents an exciting new tool to address open questions of BBB regulation.


Sign in / Sign up

Export Citation Format

Share Document