B16 Melanoma Cancer Cells with Higher Metastatic Potential are More Deformable at a Whole-Cell Level

Author(s):  
Yoshihiro Ujihara ◽  
Daichi Ono ◽  
Koki Nishitsuji ◽  
Megumi Ito ◽  
Shukei Sugita ◽  
...  
2020 ◽  
Vol 24 (1) ◽  
pp. 22-28
Author(s):  
Riza Apriani ◽  
Fajar Fauzi Abdullah

Kaempferia galanga L. belongs to the family of Zingiberaceae, an endangered medicinal plant with pharmacology activities. Ethyl-p-methoxycinnamate (EPMC) is an essential phytoconstituent of K. galanga rhizomes. Several studies have reported that EPMC has anticancer activities in several cancer cells, including CL-6 gallbladder cancer cells, HepG2liver cancer cells, MCF-7 breast cancer cells, and Raji lymphoma cancer cells. However, studies on A549 lung cancer and B16 melanoma cancer cells have not been reported. This study aimed to determine the anticancer activity of EPMC against A549 lung cancer and B16 melanoma cancer cells. EPMC was obtained by extraction using n-hexane, then recrystallized with chloroform. The isolate was then analyzed by thin-layer chromatography (TLC), and the structure was characterized by Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. Cytotoxic activity was determined under Presto Blue assay. Based on the result, EPMC from K. galanga showed the cytotoxic effect on B16 cells with an IC50 value of 97.09 μg/mL, whereas EPMC showed no significant cytotoxic effect on A549 with an IC50 value of 1407.75 μg/mL. It was concluded that EPMC has potential cytotoxic on B16 melanoma cancer cells, but it showed inactive activity against A549 lung cancer cells. Further molecular mechanism underlying EPMC cytotoxic activity needs to be conducted.


2015 ◽  
Author(s):  
Liv-Marie Eike ◽  
Brynjar Mauseth ◽  
Ketil Camilio ◽  
Oystein Rekdal ◽  
Baldur Sveinbjornsson

2016 ◽  
Author(s):  
Terese Karlsson ◽  
Reshma Sundar ◽  
Anders Widmark ◽  
Marene Landstrom ◽  
Emma Persson

2021 ◽  
Vol 124 ◽  
pp. 112086
Author(s):  
Ghazal Farahavar ◽  
Samira Sadat Abolmaali ◽  
Foroogh Nejatollahi ◽  
Amin Safaie ◽  
Sanaz Javanmardi ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
H. M. York ◽  
A. Patil ◽  
U. K. Moorthi ◽  
A. Kaur ◽  
A. Bhowmik ◽  
...  

AbstractThe endosomal system provides rich signal processing capabilities for responses elicited by growth factor receptors and their ligands. At the single cell level, endosomal trafficking becomes a critical component of signal processing, as exemplified by the epidermal growth factor (EGF) receptors. Activated EGFRs are trafficked to the phosphatase-enriched peri-nuclear region (PNR), where they are dephosphorylated and degraded. The details of the mechanisms that govern the movements of stimulated EGFRs towards the PNR, are not completely known. Here, exploiting the advantages of lattice light-sheet microscopy, we show that EGFR activation by EGF triggers a transient calcium increase causing a whole-cell level redistribution of Adaptor Protein, Phosphotyrosine Interacting with PH Domain And Leucine Zipper 1 (APPL1) from pre-existing endosomes within one minute, the rebinding of liberated APPL1 directly to EGFR, and the dynein-dependent translocation of APPL1-EGF-bearing endosomes to the PNR within ten minutes. The cell spanning, fast acting network that we reveal integrates a cascade of events dedicated to the cohort movement of activated EGF receptors. Our findings support the intriguing proposal that certain endosomal pathways have shed some of the stochastic strategies of traditional trafficking and have evolved processes that provide the temporal predictability that typify canonical signaling.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A799-A799
Author(s):  
Dhiraj Kumar ◽  
Sreeharsha Gurrapu ◽  
Hyunho Han ◽  
Yan Wang ◽  
Seongyeon Bae ◽  
...  

BackgroundLong non-coding RNAs (lncRNAs) are involved in various biological processes and diseases. Malat1 (metastasis-associated lung adenocarcinoma transcript 1), also known as Neat2, is one of the most abundant and highly conserved nuclear lncRNAs. Several studies have shown that the expression of lncRNA Malat1 is associated with metastasis and serving as a predictive marker for various tumor progression. Metastatic relapse often develops years after primary tumor removal as a result of disseminated tumor cells undergoing a period of latency in the target organ.1–4 However, the correlation of tumor intrinsic lncRNA in regulation of tumor dormancy and immune evasion is largely unknown.MethodsUsing an in vivo screening platform for the isolation of genetic entities involved in either dormancy or reactivation of breast cancer tumor cells, we have identified Malat1 as a positive mediator of metastatic reactivation. To functionally uncover the role of Malat1 in metastatic reactivation, we have developed a knock out (KO) model by using paired gRNA CRISPR-Cas9 deletion approach in metastatic breast and other cancer types, including lung, colon and melanoma. As proof of concept we also used inducible knockdown system under in vivo models. To delineate the immune micro-environment, we have used 10X genomics single cell RNA-seq, ChIRP-seq, multi-color flowcytometry, RNA-FISH and immunofluorescence.ResultsOur results reveal that the deletion of Malat1 abrogates the tumorigenic and metastatic potential of these tumors and supports long-term survival without affecting their ploidy, proliferation, and nuclear speckles formation. In contrast, overexpression of Malat1 leads to metastatic reactivation of dormant breast cancer cells. Moreover, the loss of Malat1 in metastatic cells induces dormancy features and inhibits cancer stemness. Our RNA-seq and ChIRP-seq data indicate that Malat1 KO downregulates several immune evasion and stemness associated genes. Strikingly, Malat1 KO cells exhibit metastatic outgrowth when injected in T cells defective mice. Our single-cell RNA-seq cluster analysis and multi-color flow cytometry data show a greater proportion of T cells and reduce Neutrophils infiltration in KO mice which indicate that the immune microenvironment playing an important role in Malat1-dependent immune evasion. Mechanistically, loss of Malat1 is associated with reduced expression of Serpinb6b, which protects the tumor cells from cytotoxic killing by the T cells. Indeed, overexpression of Serpinb6b rescued the metastatic potential of Malat1 KO cells by protecting against cytotoxic T cells.ConclusionsCollectively, our data indicate that targeting this novel cancer-cell-initiated domino effect within the immune system represents a new strategy to inhibit tumor metastatic reactivation.Trial RegistrationN/AEthics ApprovalFor all the animal studies in the present study, the study protocols were approved by the Institutional Animal Care and Use Committee(IACUC) of UT MD Anderson Cancer Center.ConsentN/AReferencesArun G, Diermeier S, Akerman M, et al., Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 2016 Jan 1;30(1):34–51.Filippo G. Giancotti, mechanisms governing metastatic dormancy and reactivation. Cell 2013 Nov 7;155(4):750–764.Gao H, Chakraborty G, Lee-Lim AP, et al., The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 2012b;150:764–779.Gao H, Chakraborty G, Lee-Lim AP, et al., Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proc Natl Acad Sci U S A 2014 Nov 18; 111(46): 16532–16537.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mark P. Ward ◽  
Laura E. Kane ◽  
Lucy A. Norris ◽  
Bashir M. Mohamed ◽  
Tanya Kelly ◽  
...  

AbstractCancer cells that transit from primary tumours into the circulatory system are known as circulating tumour cells (CTCs). These cancer cells have unique phenotypic and genotypic characteristics which allow them to survive within the circulation, subsequently extravasate and metastasise. CTCs have emerged as a useful diagnostic tool using “liquid biopsies” to report on the metastatic potential of cancers. However, CTCs by their nature interact with components of the blood circulatory system on a constant basis, influencing both their physical and morphological characteristics as well as metastatic capabilities. These properties and the associated molecular profile may provide critical diagnostic and prognostic capabilities in the clinic. Platelets interact with CTCs within minutes of their dissemination and are crucial in the formation of the initial metastatic niche. Platelets and coagulation proteins also alter the fate of a CTC by influencing EMT, promoting pro-survival signalling and aiding in evading immune cell destruction. CTCs have the capacity to directly hijack immune cells and utilise them to aid in CTC metastatic seeding processes. The disruption of CTC clusters may also offer a strategy for the treatment of advance staged cancers. Therapeutic disruption of these heterotypical interactions as well as direct CTC targeting hold great promise, especially with the advent of new immunotherapies and personalised medicines. Understanding the molecular role that platelets, immune cells and the coagulation cascade play in CTC biology will allow us to identify and characterise the most clinically relevant CTCs from patients. This will subsequently advance the clinical utility of CTCs in cancer diagnosis/prognosis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Carmela Martini ◽  
Mark DeNichilo ◽  
Danielle P. King ◽  
Michaelia P. Cockshell ◽  
Brenton Ebert ◽  
...  

Abstract Background The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Until recently, tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). While it is generally understood that the function of VM vessels is the same as that of EC-lined vessels (i.e. to supply oxygen and nutrients to the proliferating cancer cells), the molecular mechanisms underpinning VM are yet to be fully elucidated. Methods Human VM-competent melanoma cell lines were examined for their VM potential using the in vitro angiogenesis assays (Matrigel), together with inhibition studies using small interfering RNA and blocking monoclonal antibodies. Invasion assays and adhesion assays were used to examine cancer cell function. Results Herein we demonstrate that CD36, a cell surface glycoprotein known to promote angiogenesis by ECs, also supports VM formation by human melanoma cancer cells. In silico analysis of CD36 expression within the melanoma cohort of The Cancer Genome Atlas suggests that melanoma patients with high expression of CD36 have a poorer clinical outcome. Using in vitro ‘angiogenesis’ assays and CD36-knockdown approaches, we reveal that CD36 supports VM formation by human melanoma cells as well as adhesion to, and invasion through, a cancer derived extracellular matrix substrate. Interestingly, thrombospondin-1 (TSP-1), a ligand for CD36 on ECs that inhibits angiogenesis, has no effect on VM formation. Further investigation revealed a role for laminin, but not collagen or fibronectin, as ligands for CD36 expressing melanoma cells. Conclusions Taken together, this study suggests that CD36 is a novel regulator of VM by melanoma cancer cells that is facilitated, at least in part, via integrin-α3 and laminin. Unlike angiogenesis, VM is not perturbed by the presence of TSP-1, thus providing new information on differences between these two processes of tumor vascularization which may be exploited to combat cancer progression.


Sign in / Sign up

Export Citation Format

Share Document