Numerical and Experimental Studies on the Effects of the TBM Cutter Profile on Rock Cutting

Author(s):  
Wenjun Duan ◽  
Longguan Zhang ◽  
Mengqi Zhang ◽  
Yemao Su ◽  
Jiliang Mo ◽  
...  

Air blast drilling is effective in the most unfavorable conditions for liquid flushing: when drilling in areas with significant circulation losses, when there are difficulties with water supply, in high mountainous or difficult terrain, or in areas with harsh climates. However, air has a low heat capacity compared to liquid flushing solutions, this affects the operation of rock cutting tools through high contact temperatures with irreversible consequences such as deformation of matrices, destruction of diamonds, grinding, reduction of diamond hardness and tool burns. To prevent these problems, there is a need to develop technical means and technology to effectively ensure the temperature regime of the rock-cutting tool. This article discusses the possibility of normalizing and regulating the temperature regime of the rock-cutting tool due to forced cooling of the cleaning air at the bottom hole to negative temperatures, and a new design of the drilling projectile for drilling with air purging is developed. The results of experimental studies of the developed design of the drilling projectile are also presented.


Author(s):  
Grzegorz Stopka

AbstractThe use of asymmetrical disc tools for the mining of hard and very hard rocks is a promising direction for developing mechanical mining methods. A significant obstacle in developing mining methods with the use of asymmetric disc tools is the lack of adequate computational methods. A deep understanding of rock–tool interaction can develop industrial applications of asymmetric disc tools significantly. The fundamental problem in designing work systems with asymmetric disc tools is the lack of adequate analytical models to identify tool loads during the mining process. One reasonable approach is to use computer simulation. The purpose of the research was to develop a simulation model of rock cutting using an asymmetrical disc tool and then evaluate the developed model. In the article, the Discrete-Element Method (DEM) in LS-Dyna was adopted to simulate rock cutting with asymmetrical disc tools. Numerical tests were conducted by pushing the disc into a rock sample at a given distance from the sample edge until the material was detached entirely. Two types of rock samples were used in the simulation tests: concrete and sandstone. The independent variables in the study were the disc diameter and the cut spacing. To validate the simulation model, analogous laboratory tests were carried out. The article presents a comparison of the results of simulation and laboratory tests. The given comparison showed good accordance LS-Dyna model with the experimental studies. The proposed test results can be input data for developing simulation models on a larger scale. Thus, it will be possible to consider the complex kinematics of the dynamics of the rock-mining process with disc tools using the DEM simulation.


2013 ◽  
Vol 791-793 ◽  
pp. 778-781
Author(s):  
An Ning Zhang ◽  
Feng Zhu ◽  
Zhao Feng Zhu

When TBM tunneling, the disc cutter directly in contact with the rock. The disc cutter is an important component of the TBM, so the numerical simulation study of disc cutter breaking rock process is established. The study contents disc cutter exerted vertical force on the rock. This is instructive for improving the disc cutter layout and improving the rock breaking capacity and tunneling efficiency. According to the rock Drucker-Prager plastic yield criterion lines and rock mechanical properties, finite element model of rock breaking by disc cutter was established by ANSYSWORKBENCH software and process of rock cutting with disc cutter was simulated. The rock elastic-plastic deformation occurred in the disc cutter effect, caused accumulation of rock damage, when the rock breaks completely damaged, get the vertical force exerted on the disc cutter, which is significance for the disc cutter layout and the calculation of force of TBM cutter breaking rock.


2020 ◽  
Vol 245 ◽  
pp. 539-546
Author(s):  
Vyacheslav Neskromnykh ◽  
Marina Popova ◽  
A. Golovchenko ◽  
P. PETENEV ◽  
Liu Baochang

A rational, theoretically proved and empirically verified control system is a condition for optimal management of the drilling process in compliance with the criteria for minimizing the cost of time and material resources. A new generation of rock-cutting tools using PDC cutters (polycrystalline diamante cutters), which are extremely effective when drilling wells for various purposes in medium-hard rocks, dictates the need to develop methods and criteria for optimal control of the drilling process using this tool. The paper presents an analysis of the force interaction between rock-cutting elements, face rock, and drilling mud saturated with slam, highlights the influencing factors and provides dependencies for determining the parameters of rock failure. Empirical verification of the theoretical propositions was carried out based on the data analysis from experimental bit drilling of marble with PDC cutters with a diameter of 76.2 mm, processed using the method of full factor experiment to obtain mathematical models of factors and their graphical interpretation. The method of controlling the drilling process based on the optimal ratio of the tool rotation frequency, axial weight and deepening per one turnover is considered, which allows determining the rock failure mode at the well bottom by indirect signs and choose the optimal values of the drilling mode parameters that correspond to the most optimal conditions in terms of achieving the maximum mechanical drilling speed in conjunction with the rational mode of rock-cutting tool operation. A scheme is presented that contains possible variants of the bit run mode and ways to recognize them by the ratio of the deepening per turnover and the rotation frequency of the rock-cutting tool.


2021 ◽  
Vol 11 (1) ◽  
pp. 464
Author(s):  
Dmitriy Shishlyannikov ◽  
Ivan Zvonarev

The creation of modern machines and improvement of existing designs of rock cutting bodies of combines is constrained by the lack of experimental studies of the process of separation of successive elementary cleavages during the potash ore cutting with cutters of winning machines. The potential of the cross cutting pattern of potash ore is shown, since the formation of zones of localization of weakening and induced fractures on the surface of layer-by-layer cutting face determines the separation of the elementary cleavages with stable geometric parameters. The verification of the conclusions obtained theoretically was carried out during laboratory tastings on a specially designed bench. The research procedure provided for comparative tests of the potash block ore cutting, staggered and cross cuttings. It has been proven that the use of the cross pattern for set cutting parameters makes it possible to reduce the specific energy costs of the cutting of potash mass, to reduce the average load on the cutter, to reduce the root-mean-square deviation, and to reduce the number of fractions that are hard to enrich in the crushing products, compared to the traditional staggered cutting pattern.


Author(s):  
Kent McDonald ◽  
David Mastronarde ◽  
Rubai Ding ◽  
Eileen O'Toole ◽  
J. Richard McIntosh

Mammalian spindles are generally large and may contain over a thousand microtubules (MTs). For this reason they are difficult to reconstruct in three dimensions and many researchers have chosen to study the smaller and simpler spindles of lower eukaryotes. Nevertheless, the mammalian spindle is used for many experimental studies and it would be useful to know its detailed structure.We have been using serial cross sections and computer reconstruction methods to analyze MT distributions in mitotic spindles of PtK cells, a mammalian tissue culture line. Images from EM negatives are digtized on a light box by a Dage MTI video camera containing a black and white Saticon tube. The signal is digitized by a Parallax 1280 graphics device in a MicroVax III computer. Microtubules are digitized at a magnification such that each is 10-12 pixels in diameter.


Sign in / Sign up

Export Citation Format

Share Document