scholarly journals Investigation of the Destruction Process of Potash Ore with a Single Cutter Using Promising Cross Cutting Pattern

2021 ◽  
Vol 11 (1) ◽  
pp. 464
Author(s):  
Dmitriy Shishlyannikov ◽  
Ivan Zvonarev

The creation of modern machines and improvement of existing designs of rock cutting bodies of combines is constrained by the lack of experimental studies of the process of separation of successive elementary cleavages during the potash ore cutting with cutters of winning machines. The potential of the cross cutting pattern of potash ore is shown, since the formation of zones of localization of weakening and induced fractures on the surface of layer-by-layer cutting face determines the separation of the elementary cleavages with stable geometric parameters. The verification of the conclusions obtained theoretically was carried out during laboratory tastings on a specially designed bench. The research procedure provided for comparative tests of the potash block ore cutting, staggered and cross cuttings. It has been proven that the use of the cross pattern for set cutting parameters makes it possible to reduce the specific energy costs of the cutting of potash mass, to reduce the average load on the cutter, to reduce the root-mean-square deviation, and to reduce the number of fractions that are hard to enrich in the crushing products, compared to the traditional staggered cutting pattern.

The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


2021 ◽  
Vol 22 (10) ◽  
pp. 5056
Author(s):  
Tulio L. Campos ◽  
Pasi K. Korhonen ◽  
Neil D. Young

Experimental studies of Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular and cellular processes in metazoans at large. Since the publication of their genomes, functional genomic investigations have identified genes that are essential or non-essential for survival in each species. Recently, a range of features linked to gene essentiality have been inferred using a machine learning (ML)-based approach, allowing essentiality predictions within a species. Nevertheless, predictions between species are still elusive. Here, we undertake a comprehensive study using ML to discover and validate features of essential genes common to both C. elegans and D. melanogaster. We demonstrate that the cross-species prediction of gene essentiality is possible using a subset of features linked to nucleotide/protein sequences, protein orthology and subcellular localisation, single-cell RNA-seq, and histone methylation markers. Complementary analyses showed that essential genes are enriched for transcription and translation functions and are preferentially located away from heterochromatin regions of C. elegans and D. melanogaster chromosomes. The present work should enable the cross-prediction of essential genes between model and non-model metazoans.


2021 ◽  
Vol 1038 ◽  
pp. 93-99
Author(s):  
Alexander Levterov ◽  
Julia Nechitailo ◽  
Tatyana Plugina ◽  
Oleg Volkov

In the article, the issues of using the methods of thermo-frictional and chemical-thermal treatments for surface strengthening of steel tools were disclosed. 65G steel and U8A steel were considered. A flat graver and a cylindrical root roller were considered to be tools in need of hardening. The nature of the jewellery work using such a tool has been described. Hardening techniques, experimental studies and macro photographs of the samples were presented in this article. A detailed metallographic analysis and measurement of the microhardness of the cross-sections of the prototypes after their strengthening using various methods was carried out. The metallographic nature of the reinforcement with the formation of surface "white layers" was shown. Comparison of the properties of the samples before and after strengthening was carried out. Conclusions about the strengthening effect of the thermo-frictional and chemical-thermal methods of strengthening were made.


Author(s):  
Igor A. Guschin

On the basis of two models of lightning currents spreading on carbon plastic, the criteria of material destruction are determined. One of the models – the anisotropic conductive medium model from the Laplace equation with specified Neumann boundary conditions – makes it possible to obtain an exact solution in the form of Bessel functions for longitudinal and transverse current densities and to consider the material destruction zones by the radius and the depth. The model adequately describes the experiment with different arrangement of electrodes simulating the passage of lightning currents on constructions made of conductive composite and metal. The second – the model of composite layered structure – is constructed using the diagram of carbon plastic substitution and makes it possible to find the distribution of currents by a numerical method. The results of the calculations for both models are well consistent. The dynamics analysis of carbon plastic destruction revealed the criteria of destruction with parameters of real carbon plastic and experiment data that do not contradict the parameters of carbon plastic destruction obtained in foreign experimental studies. These criteria allow to determine the dependence between the value of the current integral and the number of layers of the composite material. Options with a small number of layers and with a large one when the reach-through breakdown criterion is possible were taken into account. Comparison of calculated and experimental destruction data showed good curve matching. The obtained criteria make it possible to predict the effects of lightning exposure under different material parameters and to take measures to improve the lightning resistance of carbon plastic products at the stage of aircraft design.


Author(s):  
Vicente Albero ◽  
Ana Espinós ◽  
Enrique Serra ◽  
Manuel L. Romero ◽  
Antonio Hospitaler

Steel-concrete composite beams embedded in floors (slim-floors) offer various advantages such as the floor thickness reduction or the ease of installation of under-floor technical equipment. However, this typology presents important differences in terms of thermal behaviour, as compared to other composite beams, when exposed to elevated temperatures. These differences are due to their special configuration, being totally contained within the concrete floor depth. Moreover, the current European fire design code for composite steel-concrete structures (EN 1994-1-2) does not provide any simplified thermal model to evaluate the temperature evolution of each slim-floor part during a fire. Additionally, only a few experimental studies can be found which may help understand the thermal behaviour of these composite beams. This paper presents an experimental investigation on the thermal behaviour of slim-floor beams. Electrical radiative panels were used in the test setup to produce the thermal heating. The thermal gap between the lower flange of the steel profile and the bottom steel plate was studied, being found to be one of the most influential elements over the cross-section temperature gradient. The experimental campaign was developed by varying the cross-section configuration in order to evaluate the influence of this parameter over the slim-floor thermal behavior. Finally, the experiments carried out were used to develop and calibrate a finite element thermal model which may help in further research on the thermal behaviour of slim-floor composite beams.


Author(s):  
Sean Jenson ◽  
Muhammad Ali ◽  
Khairul Alam

Abstract Thin walled axial members are typically used in automobiles’ side and front chassis to improve crashworthiness of vehicles. Extensive work has been done in exploring energy absorbing characteristics of thin walled structural members under axial compressive loading. The present study is a continuation of the work presented earlier on evaluating the effects of inclusion of functionally graded cellular structures in thin walled members under axial compressive loading. A compact functionally graded composite cellular core was introduced inside a cross tube with side length and wall thickness of 25.4 mm and 3.048 mm, respectively. The parameters governing the energy absorbing characteristics such as deformation or collapsing modes, crushing/ reactive force, plateau stress level, and energy curves, were evaluated. The results showed that the inclusion of composite graded cellular structure increased the energy absorption capacity of the cross tube significantly. The composite graded structure underwent progressive stepwise, layer by layer, crushing mode and provided lateral stability to the cross tube thus delaying local tube wall collapse and promoting large localized folds on the tube’s periphery as compared to highly localized and compact deformation modes that were observed in the empty cross tube under axial compressive loading. The variation in deformation mode resulted in enhanced stiffness of the composite structure, and therefore, high energy absorption by the structure. This aspect has a potential to be exploited to improve the crashworthiness of automobile structures.


2021 ◽  
pp. 276-281
Author(s):  
E.V. Ageeva ◽  
E.V. Ageev ◽  
A.A. Sysoev

The results of experimental studies of the structure and properties of electroerosive high-chromium powders obtained in kerosene are presented. The high efficiency of using the electrodispersing technology is shown, which provides for obtaining new corrosion-resistant powder materials suitable for industrial use at low energy costs.


2019 ◽  
Vol 866 ◽  
pp. 33-60 ◽  
Author(s):  
Feifei Qin ◽  
Luca Del Carro ◽  
Ali Mazloomi Moqaddam ◽  
Qinjun Kang ◽  
Thomas Brunschwiler ◽  
...  

Non-isothermal liquid evaporation in micro-pore structures is studied experimentally and numerically using the lattice Boltzmann method. A hybrid thermal entropic multiple-relaxation-time multiphase lattice Boltzmann model (T-EMRT-MP LBM) is implemented and validated with experiments of droplet evaporation on a heated hydrophobic substrate. Then liquid evaporation is investigated in two specific pore structures, i.e. spiral-shaped and gradient-shaped micro-pillar cavities, referred to as SMS and GMS, respectively. In SMS, the liquid receding front follows the spiral pattern; while in GMS, the receding front moves layer by layer from the pillar rows with large pitch to the rows with small one. Both simulations agree well with experiments. Moreover, evaporative cooling effects in liquid and vapour are observed and explained with simulation results. Quantitatively, in both SMS and GMS, the change of liquid mass with time coincides with experimental measurements. The evaporation rate generally decreases slightly with time mainly because of the reduction of liquid–vapour interface. Isolated liquid films in SMS increase the evaporation rate temporarily resulting in local peaks in evaporation rate. Reynolds and capillary numbers show that the liquid internal flow is laminar and that the capillary forces are dominant resulting in menisci pinned to the pillars. Similar Péclet number is found in simulations and experiments, indicating a diffusive type of heat, liquid and vapour transport. Our numerical and experimental studies indicate a method for controlling liquid evaporation paths in micro-pore structures and maintaining high evaporation rate by specific geometry designs.


2019 ◽  
Vol 97 (11) ◽  
pp. 1206-1209
Author(s):  
Ezgi Tantoğlu ◽  
Nalan Özkan ◽  
R. Taygun Güray

There are 35 proton-rich isotopes between 74Se and 196Hg that cannot be synthesized through neutron captures and β− decays (s- and r-processes). A third process is therefore required for the production of these nuclei, the so-called p-process. The abundance and the origin of the p-nuclei are still not fully understood even though significant experimental and theoretical efforts in astrophysical modeling have been expended in the last two decades. The experimental studies with the activation method to measure cross sections of the relevant reactions have some limitations: the reaction product must be radioactive, should have an appropriate half-life, and its decay should be followed by proper γ-radiations. If the cross section cannot be calculated with the radiation followed by the first beta decay of the product, it can be measured using the second beta decay as an alternative method. In this study, the method and candidate reactions for the cross-section measurements via the second beta decay of the reaction product using the activation method are discussed.


Author(s):  
N E Yasitli ◽  
F Bayram ◽  
B Unver ◽  
Y Ozcelik

Slab/strip production from blocks in natural stone processing plants is mostly carried out by using circular sawblade cutting machines. An efficient sawing operation can only be maintained by selecting proper cutting parameters. Experimental studies and numerical modelling methods are significant in terms of identifying the effective forces occurring during natural stone cutting with circular sawblades. In this study, experimental investigation was performed on real marble, known as Afyon White Marble, using a fully automatic circular sawblade stone cutting machine. Then, numerical modelling of circular sawing was performed with commercially available software called PFC3D. A discrete-element model of the sawing process was developed, and various numerical models were performed for different peripheral speeds and advance rates in compliance with the actual cutting operation being carried out in the laboratory. Finally, data obtained from the experimental studies were compared with the modelling data. A comparison indicates that the reactional cutting forces obtained by means of the numerical modelling are in good agreement with the results of the laboratory measurements. Consequently, the cutting operation can be determined quickly and economically. A literature review showed that, through this study, numerical modelling of the circular sawblade stone cutting process was successfully performed for the first time. It was envisaged that this would dynamically help in the examination of distinct factors in the area of natural stone processing by numerical modelling and in the illustration of the sawing mechanism.


Sign in / Sign up

Export Citation Format

Share Document