Research on vibration of ceramic motorized spindle influenced by interference and thermal displacement

Author(s):  
Zinan Wang ◽  
Ke Zhang ◽  
Zhan Wang ◽  
Xiaotian Bai ◽  
Qingyuan Wang
2021 ◽  
pp. 107754632110233
Author(s):  
Wei Feng ◽  
Kun Zhang ◽  
Baoguo Liu ◽  
Weifang Sun ◽  
Sijie Cai

The air-gap eccentricity will produce unbalanced magnetic pull and cause vibrations and noises in a motor. In this study, the dynamic behavior of a synchronous motorized spindle with inclined eccentricity is investigated. A semi-analytical method is proposed to model the unbalanced magnetic pull and the electromagnetic torque of a rotor with inclined eccentricity, and the semi-analytical method is verified by the finite element method. The dynamic model of a spindle-bearing system is built by taking the centrifugal force and gyroscopic effects into account. Then, the vibration response of dynamic displacement eccentricity, inclined eccentricity including displacement eccentricity and angle eccentricity, rotating speed, and unbalanced mass eccentricity in both time domain and frequency domain are simulated and analyzed. The results show that the eccentricities can lead to fluctuations in amplitudes of the dynamic displacement response and the angle response. The frequency components of the dynamic responses are the combination of rotating frequency, VC frequency, and power frequency. It is indicated that the coupling interactions of bearing forces, unbalanced mass force, and unbalanced magnetic pull have an obvious effect on the spindle-bearing system.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110208
Author(s):  
Yuan Zhang ◽  
Lifeng Wang ◽  
Yaodong Zhang ◽  
Yongde Zhang

The thermal deformation of high-speed motorized spindle will affect its reliability, so fully considering its thermal characteristics is the premise of optimal design. In order to study the thermal characteristics of high-speed motorized spindles, a coupled model of thermal-flow-structure was established. Through experiment and simulation, the thermal characteristics of spiral cooling motorized spindle are studied, and the U-shaped cooled motorized spindle is designed and optimized. The simulation results show that when the diameter of the cooling channel is 7 mm, the temperature of the spiral cooling system is lower than that of the U-shaped cooling system, but the radial thermal deformation is greater than that of the U-shaped cooling system. As the increase of the channel diameter of U-shaped cooling system, the temperature and radial thermal deformation decrease. When the diameter is 10 mm, the temperature and radial thermal deformation are lower than the spiral cooling system. And as the flow rate increases, the temperature and radial thermal deformation gradually decrease, which provides a basis for a reasonable choice of water flow rate. The maximum error between experiment and simulation is 2°C, and the error is small, which verifies the accuracy and lays the foundation for future research.


2011 ◽  
Vol 52-54 ◽  
pp. 2021-2026
Author(s):  
Gui Ling Deng ◽  
Can Zhou

Thermal deformation is an important factor to affect the accuracy of the motorized spindle, the core component of high-speed machine tool. To understand the spindle system transient thermal characteristics of the high-speed turning center CH7516GS, some high-precision sensors and high-frequency data acquisition system is used to establish the temperature and displacement measuring system. The thermal deformation compensation model is established on the basis of the experimental test results.


2016 ◽  
Vol 49 (1) ◽  
pp. 110-119 ◽  
Author(s):  
Nanna Wahlberg ◽  
Niels Bindzus ◽  
Sebastian Christensen ◽  
Jacob Becker ◽  
Ann-Christin Dippel ◽  
...  

A serious limitation of the all-in-vacuum diffractometer reported by Straasø, Dippel, Becker & Als-Nielsen [J. Synchrotron Rad.(2014),21, 119–126] has so far been the inability to cool samples to near-cryogenic temperatures during measurement. The problem is solved by placing the sample in a jet of helium gas cooled by liquid nitrogen. The resulting temperature change is quantified by determining the change in unit-cell parameter and atomic displacement parameter of copper. The cooling proved successful, with a resulting temperature of ∼95 (3) K. The measured powder X-ray diffraction data are of superb quality and high resolution [up to sinθ/λ = 2.2 Å−1], permitting an extensive modelling of the thermal displacement. The anharmonic displacement of copper was modelled by a Gram–Charlier expansion of the temperature factor. As expected, the corresponding probability distribution function shows an increased probability away from neighbouring atoms and a decreased probability towards them.


Sign in / Sign up

Export Citation Format

Share Document