scholarly journals Prevalence of human pathogens of the clade Nakaseomyces in a culture collection—the first report on Candida bracarensis in Poland

2018 ◽  
Vol 64 (3) ◽  
pp. 307-312 ◽  
Author(s):  
Marianna Małek ◽  
Paulina Mrowiec ◽  
Karolina Klesiewicz ◽  
Iwona Skiba-Kurek ◽  
Adrian Szczepański ◽  
...  
Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 849-849 ◽  
Author(s):  
A. Colmán ◽  
R. A. da Silva ◽  
R. Alves ◽  
M. Silva ◽  
R. W. Barreto

Phoenix roebelenii (Arecaceae), known as dwarf date (tamareira-anã in Brazil), is a palm native to Southeast Asia and widely cultivated worldwide because of its ornamental value and ease of adaptation to a broad range of climates and soil types (4). In June 2012, some individuals were observed in a private garden in the municipality of Viçosa (state of Minas Gerais, Brazil) bearing numerous necrotic lesions on its leaves. Representative samples were taken, dried in a plant press, and brought to the laboratory for examination. A fungus was regularly associated with the leaf spots. Fungal structures were mounted in lactophenol and slides were examined under a microscope (Olympus BX 51). Spores were taken from sporulating colonies with a sterile fine needle and plated on PDA for isolation. A pure culture was deposited in the culture collection of the Universidade Federal de Viçosa (accession COAD1338). A dried herbarium sample was deposited in the local herbarium (VIC39741). The fungus had the following morphology: conidiophores grouped on sporodochia, cylindrical, 12 to 29 × 5 to 6 μm, dark brown; conidiogenous cells, terminal, proliferating percurrently (annellidic), 8 to 20 × 5 to 6 μm, pale to dark brown; conidia obclavate to subcylindrical, straight, 58 to 147 × 5 to 6 μm, 6 to 16 septate, hila thickened and darkened with a thin-walled projecting papilla, dark brown, and verrucose. The morphology of the Brazilian collections agrees well with the description of Stigmina palmivora (2), a species known to cause leaf spots on P. roebelenii in the United States (Florida) and Japan (3). Pathogenicity was demonstrated through inoculation of leaves of healthy plants by placing 6 mm diameter cuture disks of COAD1338 on the leaf surface followed by incubation in a moist chamber for 48 h and then transferred to a greenhouse bench at 21 ± 3°C. Typical leaf spots were observed 15 days after inoculation. DNA was extracted from the isolate growing in pure culture and ITS and LSU sequences were generated and deposited in GenBank under the accession numbers KF656785 and KF656786, respectively. These were compared by BLASTn with other entries in GenBank, and the closest match for each region were Mycosphaerella colombiensis strain X215 and M. irregulariamosa strain CPC 1362 (EU514231, GU2114441) with 93% of nucleotide homology (over 100% query coverage) for ITS and 98% of nucleotide homology (over 100% query coverage) for LSU. There are no sequences for S. palmivora deposited in public databases for comparison, but for Stigmina platani, the type species in this genus, 86% and 96% nucleotide homology for ITS and LSU with S. palmivora were found. The genus Stigmina is regarded as being polyphyletic (1) and this is probably reflected by these low homology levels found in the BLASTn search. To our knowledge, this is the first report of Stigmina palmivora in Brazil. References: (1) P. W. Crous et al. Stud. Mycol. 75:37, 2012. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, UK, 1971. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab. ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , 2013. (4) H. Lorenzi et al. Palmeira no Brasil: Exóticas e Nativas, 2nd ed. Editora Plantarum, Nova Odessa, Brazil, 2005.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 287-287
Author(s):  
K. S. Han ◽  
J. H. Park ◽  
S. E. Cho ◽  
H. D. Shin

Pachysandra terminalis Siebold & Zucc., known as Japanese pachysandra, is a creeping evergreen perennial belonging to the family Buxaceae. In April 2011, hundreds of plants showing symptoms of leaf blight and stem canker with nearly 100% incidence were found in a private garden in Suwon, Korea. Plants with the same symptoms were found in Seoul in May and Hongcheon in August. Affected leaves contained tan-to-yellow brown blotches. Stem and stolon cankers first appeared as water soaked and developed into necrotic lesions. Sporodochia were solitary, erumpent, circular, 50 to 150 μm in diameter, salmon-colored, pink-orange when wet, and with or without setae. Setae were hyaline, acicular, 60 to 100 μm long, and had a base that was 4 to 6 μm wide. Conidiophores were in a dense fascicle, not branched, hyaline, aseptate or uniseptate, and 8 to 20 × 2 to 3.5 μm. Conidia were long, ellipsoid to cylindric, fusiform, rounded at the apex, subtruncate at the base, straight to slightly bent, guttulate, hyaline, aseptate, 11 to 26 × 2.5 to 4.0 μm. A single-conidial isolate formed cream-colored colonies that turned into salmon-colored colonies on potato dextrose agar (PDA). Morphological and cultural characteristics of the fungus were consistent with previous reports of Pseudonectria pachysandricola B.O. Dodge (1,3,4). Voucher specimens were housed at Korea University (KUS). Two isolates, KACC46110 (ex KUS-F25663) and KACC46111 (ex KUS-F25683), were accessioned in the Korean Agricultural Culture Collection. Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced using ABI Prism 337 automatic DNA sequencer (Applied Biosystems, Foster, CA). The resulting sequence of 487 bp was deposited in GenBank (Accession No. JN797821). This showed 100% similarity with a sequence of P. pachysandricola from the United States (HQ897807). Isolate KACC46110 was used in pathogenicity tests. Inoculum was prepared by harvesting conidia from 2-week-old cultures on PDA. Ten young leaves wounded with needles were sprayed with conidial suspensions (~1 × 106 conidia/ml). Ten young leaves that served as the control were treated with sterile distilled water. Plants were covered with plastic bags to maintain a relative humidity of 100% at 25 ± 2°C for 24 h. Typical symptoms of brown spots appeared on the inoculated leaves 4 days after inoculation and were identical to the ones observed in the field. P. pachysandricola was reisolated from 10 symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in the United States, Britain, Japan, and the Czech Republic (2,3), but not in Korea. To our knowledge, this is the first report of P. pachysandricola on Pachysandra terminalis in Korea. Since this plant is popular and widely planted in Korea, this disease could cause significant damage to nurseries and the landscape. References: (1) B. O. Dodge. Mycologia 36:532, 1944. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , September 24, 2011. (3) I. Safrankova. Plant Prot. Sci. 43:10, 2007. (4) W. A. Sinclair and H. H. Lyon. Disease of Trees and Shrubs. 2nd ed. Cornell University Press, Ithaca, NY, 2005.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1580-1580
Author(s):  
J. H. Park ◽  
K. S. Han ◽  
J. Y. Kim ◽  
H. D. Shin

Sweet basil, Ocimum basilicum L., is a fragrant herb belonging to the family Lamiaceae. Originated in India 5,000 years ago, sweet basil plays a significant role in diverse cuisines across the world, especially in Asian and Italian cooking. In October 2008, hundreds of plants showing symptoms of leaf spot with nearly 100% incidence were found in polyethylene tunnels at an organic farm in Icheon, Korea. Leaf spots were circular to subcircular, water-soaked, dark brown with grayish center, and reached 10 mm or more in diameter. Diseased leaves defoliated prematurely. The damage purportedly due to this disease has reappeared every year with confirmation of the causal agent made again in 2011. A cercosporoid fungus was consistently associated with disease symptoms. Stromata were brown, consisting of brown cells, and 10 to 40 μm in width. Conidiophores were fasciculate (n = 2 to 10), olivaceous brown, paler upwards, straight to mildly curved, not geniculate in shorter ones or one to two times geniculate in longer ones, 40 to 200 μm long, occasionally reaching up to 350 μm long, 3.5 to 6 μm wide, and two- to six-septate. Conidia were hyaline, acicular to cylindric, straight in shorter ones, flexuous to curved in longer ones, truncate to obconically truncate at the base, three- to 16-septate, and 50 to 300 × 3.5 to 4.5 μm. Morphological characteristics of the fungus were consistent with the previous reports of Cercospora guatemalensis A.S. Mull. & Chupp (1,3). Voucher specimens were housed at Korea University herbarium (KUS). An isolate from KUS-F23757 was deposited in the Korean Agricultural Culture Collection (Accession No. KACC43980). Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequence of 548 bp was deposited in GenBank (Accession No. JQ995781). This showed >99% similarity with sequences of many Cercospora species, indicating their close phylogenetic relationship. Isolate of KACC43980 was used in the pathogenicity tests. Hyphal suspensions were prepared by grinding 3-week-old colonies grown on PDA with distilled water using a mortar and pestle. Five plants were inoculated with hyphal suspensions and five plants were sprayed with sterile distilled water. The plants were covered with plastic bags to maintain a relative humidity of 100% for 24 h and then transferred to a 25 ± 2°C greenhouse with a 12-h photoperiod. Typical symptoms of necrotic spots appeared on the inoculated leaves 6 days after inoculation, and were identical to the ones observed in the field. C. guatemalensis was reisolated from symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in Malawi, India, China, and Japan (2,3), but not in Korea. To our knowledge, this is the first report of C. guatemalensis on sweet basil in Korea. Since farming of sweet basil has recently started on a commercial scale in Korea, the disease poses a serious threat to safe production of this herb, especially in organic farming. References: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Ithaca, NY, 1953. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology & Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , May 5, 2012. (3) J. Nishikawa et al. J. Gen. Plant Pathol. 68:46, 2002.


Plant Disease ◽  
2005 ◽  
Vol 89 (2) ◽  
pp. 204-204 ◽  
Author(s):  
D. Hüberli ◽  
K. L. Ivors ◽  
A. Smith ◽  
J. G. Tse ◽  
M. Garbelotto

In May 2003, Phytophthora ramorum S. Werres & A.W.A.M. de Cock was isolated from the leaf tips of a single plant of false Solomon's seal (Maianthemum racemosum (L.) Link, formely known as Smilacina racemosa (L.) Desf.), a native, herbaceous perennial of the Liliaceae family, at the Jack London State Park in Sonoma County, California. Affected leaves had cream-to-brown lesions on the tips that were delimited by a yellow chlorotic zone. Lesions on the stems were not observed. The isolate (American Type Culture Collection [ATCC], Manassas, VA, MYA-3280; Centraal Bureau voor Schimmelcultures, Baarn, the Netherlands, CBS 114391) was typical of P. ramorum with large chlamydospores and caduceus, semipapillate sporangia, and the sequence (GenBank Accession No. AY526570) of the internal transcribed spacer region of the rDNA matched those published previously (4). The site, from which wood rose (Rosa gymnocarpa) was recently identified as a host, is a mixed forest containing confirmed P. ramorum-infected coast redwood (Sequoia sempervirens), California bay laurel (Umbellularia californica), and tanoak (Lithocarpus densiflora) trees (2,3). Two leaves per asymptomatic, pesticide free, potted plant of false Solomon's seal were inoculated with zoospores of the P. ramorum isolate obtained from infected false Solomon's seal (1). Five plants were inoculated in trial 1, and the following day, three plants were inoculated in trial 2. A control leaf of each plant was dipped in sterile deionized water. Plants were enclosed in plastic bags, misted regularly with sterile distilled water, and maintained at 16 to 21°C in the greenhouse. In both trials, plants did not have lesions on the leaves after 16 days and were reinoculated on separate days for each trial with higher concentrations of zoospores (1 × 105 [trial 1] and 2 × 105 [trial 2] zoospores/ml). Cream-colored lesions, similar to those observed in the field, were evident 1 week after the second inoculation and stopped progressing in both trials by 17 days. Lesions starting from the leaf tips averaged 13 mm (range 8 to 24 mm) long, and P. ramorum was reisolated on Phytophthora-selective agar medium modified with 25 mg of pentachloronitrobenzene from 44% (trial 1) and 83% (trial 2) of all lesions (4). Control leaves had no lesions, and P. ramorum was not reisolated. Sporangia were not observed on any leaves when examined with the dissecting microscope. The fact that lesions developed only after a second inoculation with higher concentrations of zoospores, and these lesions stopped progressing after 17 days, suggests that false Solomon's seal is much less susceptible than other hosts such as western starflower (Trientalis latifolia) (1) and wood rose (2). To our knowledge, this is the first report of a plant from the Liliaceae as a natural host for P. ramorum, although Smilax aspersa was identified as being susceptible in artificial inoculations of detached leaves (E. Moralejo and L. Hernández, personal communication). False Solomon's seal is popular in the horticultural industry. References: (1) D. Hüberli et al. Plant Dis. 87:599, 2003. (2) D. Hüberli et al. Plant Dis. 88:430, 2004. (3) P. E. Maloney et al. Plant Dis. 86:1274, 2002. (4) D. M. Rizzo et al. Plant Dis. 86:205, 2002.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 147-147
Author(s):  
S. H. Lee ◽  
C. K. Lee ◽  
M. J. Park ◽  
H. D. Shin

Aralia elata (Miq.) Seem., known as Japanese angelica tree, is a deciduous shrub belonging to the Araliaceae, which is native to East Asia. The young shoots have long been used in various dishes in East Asia. Commercial cultivation of this shrub, especially in polytunnels, is expanding in Korea. Several diseases including Sclerotinia rot have been known to be present on this plant (1,2). In early September 2007, leaf spot symptoms were first observed on several trees in Hongcheon, Korea. Microscopic observations revealed that the leaf spots were associated with an Ascochyta sp. Further surveys of the Ascochyta leaf spot showed the occurrence of the disease in approximately 5 to 10% of the trees in the 3 ha of commercial fields surveyed in Chuncheon, Gapyeong, Inje, and Jinju, Korea. Initial symptoms on leaves were circular to irregular, brown to dark brown, becoming zonate, and finally fading to grayish brown in the center with a yellow halo. Representative samples were deposited in the herbarium of Korea University. Conidiomata on leaf lesions were pycnidial, amphigenous, but mostly epiphyllous, immersed or semi-immersed in host tissue, light brown to olive brown, and 60 to 200 μm in diameter. Ostioles were papillate, 20 to 35 μm wide, and surrounded by a ring of darker cells. Conidia were hyaline, smooth, cylindrical to clavate, straight to mildly curved, slightly constricted at the septa, medianly one-septate, sometimes aseptate, 8 to 16 × 2.5 to 3.5 μm, and contained small oil drops. These morphological characteristics were consistent with the previous reports of Ascochyta marginata J.J. Davis (3,4). A monoconidial isolate was cultured on potato dextrose agar (PDA) plates and accessioned in the Korea Agricultural Culture Collection (Accession KACC43082). The conidia were readily formed on PDA. Inoculum for the pathogenicity tests was prepared by harvesting conidia from 30-day-old cultures of KACC43082 and a conidial suspension (approximately 2 × 106 conidia/ml) was sprayed onto leaves of three healthy seedlings. Three noninoculated seedlings served as controls. Inoculated and noninoculated plants were covered with plastic bags for 48 h in a glasshouse. After 7 days, typical leaf spot symptoms started to develop on the leaves of the inoculated plants. The fungus, A. marginata, was reisolated from those lesions, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in Japan (4) and China (3). To our knowledge, this is the first report of A. marginata on Japanese angelica trees in Korea. According to our field observations in Korea, the Ascochyta leaf spot mostly occurred on plants growing in a humid environment, especially during the rainy season. The seedlings as well as the trees growing in sunny, well-ventilated plots were nearly free from this disease. Therefore, the growing conditions seemed to be the most important factor for the development and severity of the disease. References: (1) C. K. Lee et al. Plant Pathol. J. 26:426, 2010. (2) S. H. Lee et al. Diseases of Japanese Angelica Tree and Their Control. Research Report 08-10. Korea Forest Research Institute. Seoul, Korea, 2008. (3) J. Sun et al. Acta Mycol. Sin. 14:107, 1995. (4) M. Yoshikawa and T. Yokoyama. Mycoscience 36:67, 1995.


2011 ◽  
Vol 70 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Aseer Manilal ◽  
Sugathan Sujith ◽  
Balu Sabarathnam ◽  
George Kiran ◽  
Joseph Selvin ◽  
...  

Biological activity of the red algaLaurencia brandeniiThe marine red algaLaurencia brandeniicollected from the southwest coast of India (Indian Ocean) was extracted and fractioned using column chromatography. The individual fractions were evaluatedin vitrovia antimicrobial activity against six species of Microbial Type Culture Collection and three species of clinical human pathogens, antipest activity onSitophilus oryzae, maggoticidal activity against 2ndinstar larvae ofSarcophagasp. and termiticidal activity againstMicrotermes obesi.It was found that the fraction eluted using petroleum ether:chloroform (6:4) exhibited broader biological activities. The phyco-constituents of the active fraction were identified by gas chromatography-mass spectrometry (GC-MS) analysis. The GC-MS profile of the active fraction revealed that the main constituent was octadecadienoic acid (49.75%) followed by n-hexadecanoic acid (14.24%), which might have a functional role in the biological activities. The overall activity profile envisages that these bioactive compounds fromL. brandeniicould be utilized as a renewable natural resource for the development of novel environmental-compatible formulations for the control of human pathogens, pests, termites and maggots.


2018 ◽  
Vol 63 (4) ◽  
pp. 517-523 ◽  
Author(s):  
Rogelio de J. Treviño-Rangel ◽  
José F. Espinosa-Pérez ◽  
Hiram Villanueva-Lozano ◽  
Alexandra M. Montoya ◽  
Angel Andrade ◽  
...  

Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1659-1659 ◽  
Author(s):  
W. A. S. Vieira ◽  
R. J. Nascimento ◽  
S. J. Michereff ◽  
K. D. Hyde ◽  
M. P. S. Câmara

Papaya fruits (Carica papaya L.) (cv. Golden) showing post-harvest anthracnose symptoms were observed during surveys of papaya disease in northeastern Brazil from 2008 to 2012. Fruits affected by anthracnose showed sunken, prominent, dark brown to black lesions. Small pieces (4 to 5 mm) of necrotic tissue were surface sterilized for 1 min in 1.5% NaOCl, washed twice with sterile distilled water, and plated onto potato dextrose agar (PDA) amended with 0.5 g liter–1 streptomycin sulfate. Macroscopic colony characters and microscopic morphology characteristics of four isolates were observed after growth on PDA (2) for 7 days at 25°C under a 12-hr light/dark cycle. Colonies varied between colorless and pale brown in reverse, with orange conidial mass. Conidia were hyaline, aseptate, cylindrical with round ends, slightly flattened, smooth-walled, guttulate, and 13.5 (10.5 to 17.1) μm × 3.8 (2.1 to 4.8) μm (l/w ratio = 3.5, n = 50), typical of Colletotrichum spp. DNA sequencing of partial sequences of actin (ACT) gene and the internal transcribed spacer (ITS1-5.8S-ITS2 rRNA) were conducted to accurately identify the species. Sequences of the papaya isolates were 99% similar to those of Colletotrichum brevisporum (GenBank Accession Nos. JN050216, JN050217, JN050238, and JN050239). A phylogenetic analysis using Bayesian inference and including published ACT and ITS data for C. brevisporum and other Colletotrichum species was carried out (1). Based on morphological and molecular data, the papaya isolates were identified as C. brevisporum. Conidia of the papaya isolates were narrower than those described for C. brevisporum (2.9 to 4.8 μm and 5 to 6 μm, respectively) (1), which may be due to differences in incubation temperature or a typical variation in conidial size in Colletotrichum species (3). Sequences of the isolates obtained in this study are deposited in GenBank (ACT Accession Nos. KC702903, KC702904, KC702905, and KC702906; ITS Accession Nos. HM163181, HM015851, HM015854, and HM015859). Cultures are deposited in the Culture Collection of Phytopathogenic Fungi of the Universidade Federal Rural de Pernambuco, Recife, Brazil (CMM 1672, CMM 1702, CMM 1822, and CMM 2005). Pathogenicity testing was conducted with all four strains of C. brevisporum on papaya fruits (cv. Golden). Fruits were wounded at the medium region by pushing the tip of four sterile pins through the surface of the skin to a depth of 3 mm. Mycelial plugs taken from the margin of actively growing colonies (PDA) of each isolate were placed in shallow wounds. PDA discs without fungal growth were used as control. Inoculated fruits were maintained in a humid chamber for 2 days at 25°C in the dark. After 6 days, anthracnose symptoms developed that were typical of diseased fruit in the field. C. brevisporum was successfully reisolated from symptomatic fruits to fulfill Koch's postulates. C. brevisporum was described from Neoregalia sp. and Pandanus pygmaeus in Thailand (1). To our knowledge, this is the first report of C. brevisporum in Brazil and the first report of this species causing papaya fruit anthracnose. References: (1) P. Noireung et al. Cryptogamie Mycol., 33:347, 2012. (2) B. C. Sutton. The Genus Glomerella and its anamorph Colletotrichum. CAB International, Wallingford, UK, 1992. (3) B. S. Weir et al. Stud. Mycol. 73:115, 2012.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1110-1110 ◽  
Author(s):  
J. D. Eisenback ◽  
C. W. Roane

On August 24, 2003, during a foray for grasses infected with fungi, redtop creeping bentgrass (Agrostis stolonifera L.) was collected on Butt Mountain Lookout near an abandoned fire tower with coordinates 80°37′40.3″ W and 37°22′14.0″N at an altitude of 1,284 m overlooking the New River between the towns of Pembroke and Ripplemead, VA. Seed heads with very elongated glumes, lemmas, and paleas were very common, and the incidence rate was nearly 95% on the basis of symptomatic plants in the immediate area surrounding the tower comprising more than 5 ha of a grassy meadow. Close examination revealed the occurrence of elongated, blackish galls replacing the ovaries and containing Anguina agrostis (Steinbuch, 1799) Filipjev, 1936. Nematode cultures were established and maintained on red top creeping bentgrass (A. stolonifera) in a greenhouse. Identification was based on morphology and measurements of juveniles L = 407 + 22 (376-418) μ, stylet L = 18.5 + 1.7 (17.0-21.3) μ males L = 351 + 17 (339-367) μm; and females L = 455 + 33. Examination of specimens collected previously by C. Roane revealed that another population of Anguina agrostis was also found on August 9, 1990 parasitizing the same host growing along Echo Trail near Big Lake Lodge Rd. in St. Louis County, MN. The infestation at the Virginia site may have been from sowing infested seeds at the disturbed construction site for the fire lookout tower and other buildings. However, the occurrence at the Minnesota site is less likely to be anthropogenic. Voucher specimens from both locations were placed in the Virginia Tech Nematode Collection, and voucher cultures are maintained in the Virginia Tech Nematode Culture Collection.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1070-1070 ◽  
Author(s):  
J. H. Park ◽  
K. S. Han ◽  
Y. D. Kwon ◽  
H. D. Shin

Tricyrtis macropoda Miq. (syn. T. dilatata Nakai), known as speckled toadlily, is a perennial herb native to China, Japan, and Korea. The plant has been highly praised for its beautiful flowers and rare populations in natural habitats. In September 2006, several dozen plants were heavily damaged by leaf spots and blight in cultivated plantings in the city of Pocheon, Korea. The infections with the same symptoms were repeated every year. In July 2011, the same symptoms were found on T. macropoda in the cities of Gapyeong and Osan, Korea. The leaf lesions began as small, water-soaked, pale greenish to grayish spots, which enlarged to form concentric rings and ultimately coalesced. A number of blackish acervuli were formed in the lesions. Acervuli were mostly epiphyllous, circular to ellipsoid, and 40 to 200 μm in diameter. Setae were two- to three-septate, dark brown at the base, paler upwards, acicular, and up to 100 μm long. Conidia (n = 30) were long obclavate to oblong-elliptical, sometimes fusiform-elliptical, guttulate, hyaline, and 12 to 20 × 4 to 6.5 μm (mean 15.4 × 5.2 μm). These morphological characteristics of the fungus were consistent with the description of Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. (2). Voucher specimens (n = 7) were deposited in the Korea University herbarium (KUS). Two isolates, KACC46374 (ex KUS-F25916) and KACC46405 (ex KUS-F26063), were deposited in the Korean Agricultural Culture Collection. Fungal DNA was extracted and the complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequences of 549 bp were deposited in Genbank (Accession Nos. JQ619480 and JQ619481). They showed 100% similarity with a sequence of C. gloeosporioides (EU32619). Isolate KACC46374 was used in a pathogenicity test. Inoculum was prepared by harvesting conidia from 3-week-old cultures on potato dextrose agar. A conidial suspension (2 × 106 conidia/ml) was sprayed onto 15 leaves of three plants. Three noninoculated plants served as controls. Plants were covered with plastic bags to maintain 100% relative humidity for 24 h and then kept in a greenhouse (22 to 28°C and 70 to 80% RH). After 5 days, typical leaf spot symptoms, identical to the ones observed in the field, started to develop on the leaves of inoculated plants. No symptoms were observed on control plants. C. gloeosporioides was reisolated from the lesions of inoculated plants, thus fulfilling Koch's postulates. An anthracnose associated with C. tricyrtii (Teng) Teng was recorded on T. formosana and T. latifolia in China (3) and on T. formosana in Taiwan (1), respectively, without etiological studies. The morphological features of C. tricyrtii are within the variation of C. gloeosporioides (2). To our knowledge, this is the first report of anthracnose of T. macropoda. This report has significance to indigenous plant resource conservation managers and scientists because T. macropoda has been listed as one of the 126 “Rare and Endangered Plants” by the Korea Forest Service since 1991. References: (1) K. Sawada. Rep. Dept. Agric. Gov. Res. Inst. Formosa 87: 1, 1944. (2) B. C. Sutton. Pages 1–27 in: Colletotrichum Biology, Pathology and Control. J. A. Bailey and M. J. Jeger, eds. CAB International, Wallingford, U.K. 1992. (3) S. C. Teng. Contrib. Biol. Lab. Sci. Soc. China 8:36, 1932.


Sign in / Sign up

Export Citation Format

Share Document