Effects of Saltwater Pulses on Soil Microbial Enzymes and Organic Matter Breakdown in Freshwater and Brackish Coastal Wetlands

2020 ◽  
Vol 43 (4) ◽  
pp. 814-830 ◽  
Author(s):  
Shelby Servais ◽  
John S. Kominoski ◽  
Carlos Coronado-Molina ◽  
Laura Bauman ◽  
Stephen E. Davis ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 665
Author(s):  
Ladislav Holik ◽  
Jiří Volánek ◽  
Valerie Vranová

Soil proteases are involved in organic matter transformation processes and, thus, influence ecosystem nutrient turnovers. Phytohormones, similarly to proteases, are synthesized and secreted into soil by fungi and microorganisms, and regulate plant rhizosphere activity. The aim of this study was to determine the effect of auxins, cytokinins, ethephon, and chlorocholine chloride on spruce forest floor protease activity. It was concluded that the presence of auxins stimulated native proteolytic activity, specifically synthetic auxin 2-naphthoxyacetic acid (16% increase at added quantity of 5 μg) and naturally occurring indole-3-acetic acid (18%, 5 μg). On the contrary, cytokinins, ethephon and chlorocholine chloride inhibited native soil protease activity, where ethephon (36% decrease at 50 μg) and chlorocholine chloride (34%, 100 μg) showed the highest inhibitory effects. It was concluded that negative phytohormonal effects on native proteolytic activity may slow down organic matter decomposition rates and hence complicate plant nutrition. The study enhances the understanding of rhizosphere exudate effects on soil microbial activity and soil nitrogen cycle.


2021 ◽  
Vol 61 (7) ◽  
pp. 690
Author(s):  
Gisele M. Fagundes ◽  
Gabriela Benetel ◽  
Mateus M. Carriero ◽  
Ricardo L. M. Sousa ◽  
Kelly C. Santos ◽  
...  

Context Plant bioactive compounds such as condensed tannins (CT) are seen as an alternative to rumen chemical modulators to mitigate rumen methanogenesis in livestock; however, the presence of CT in ruminant faeces also produces a series of changes in soil microbiomes. Little is known about these effects on soil nutrient dynamics. Therefore, whether CT affect the decomposition process of faecal organic matter, delaying it and consequently increasing soil carbon and nitrogen (N) sequestration, merits study. Aims Our study investigated the effects of a diet rich in CT on bovine faecal composition and on subsequent dynamics of a soil microbial population. Methods Faeces were analysed from cattle fed the following diets: control (no CT), 1.25% CT, 2.5% CT. In a greenhouse pot experiment over a period of 60 days, faeces from the three dietary treatments were applied to soil and the soil microbial populations were measured against a control with no faeces applied. Key results The presence of CT increased the excretion of faecal N and of neutral and acid detergent fibres and lignin, and the higher rate of CT reduced the rate of soil organic matter decomposition. Treatments with dietary CT resulted in greater total numbers of bacteria in the soil than in the no-faeces control and stimulated numbers of Actinobacteria, Proteobacteria (α-Proteobacteria) and Firmicutes. Conclusions The study showed that CT alter N recycling and other nutrient inputs in a soil–animal ecosystem by increasing faecal N inputs, delaying organic matter breakdown, and changing soil microbial dynamics. Implications The presence of CT in ruminant diets can be beneficial to the soil environment. Sustainable management practices should be encouraged by providing ruminants with feed including high-CT legumes in silvopastoral systems.


Soil Research ◽  
2011 ◽  
Vol 49 (4) ◽  
pp. 287 ◽  
Author(s):  
V. Gonzalez-Quiñones ◽  
E. A. Stockdale ◽  
N. C. Banning ◽  
F. C. Hoyle ◽  
Y. Sawada ◽  
...  

Since 1970, measurement of the soil microbial biomass (SMB) has been widely adopted as a relatively simple means of assessing the impact of environmental and anthropogenic change on soil microorganisms. The SMB is living and dynamic, and its activity is responsible for the regulation of organic matter transformations and associated energy and nutrient cycling in soil. At a gross level, an increase in SMB is considered beneficial, while a decline in SMB may be considered detrimental if this leads to a decline in biological function. However, absolute SMB values are more difficult to interpret. Target or reference values of SMB are needed for soil quality assessments and to allow ameliorative action to be taken at an appropriate time. However, critical values have not yet been successfully identified for SMB. This paper provides a conceptual framework which outlines how SMB values could be interpreted and measured, with examples provided within an Australian context.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 675 ◽  
Author(s):  
Zsolt Kotroczó ◽  
Katalin Juhos ◽  
Borbála Biró ◽  
Tamás Kocsis ◽  
Sándor Attila Pabar ◽  
...  

Soil organic matter supply is mainly derived from plant litter. The early stages of litter degradation is a very dynamic process. Thus, its study is important for understanding litter degradation and the control factors of different biomes and ecosystems. In the frame of the Síkfőkút DIRT (Detritus Input and Removal Treatments) Project, the effect of organic matter treatment was studied on the rate of decomposition of organic matter by applying different kinds of organic materials (leaf and wood litter, green and rooibos tea material, and cellulose cotton wool). During long-term experiments, we intended to investigate how the different organic matter manipulations changed by the soil microbial community and how it affects the degradation of different quality organic matter in the soil. The important main purpose of the research was to investigate litter degradation and its main regulators, contributing to both current and future climate scenarios. According to our results, in the case of litter-doubling treatments, we experienced a greater loss of organic matter compared to the weight of the litter bags placed in the soil of organic matter-withdrawal treatments. Furthermore, based on our results, we found that the decomposition rate is influenced by litter quality (leaf and cellulose wool) that is to be decomposed and by the applied litter treatments depending on the time allowed for decomposition. A drier climate by slowing down the degradation processes and by increasing the proportion of recalcitrant molecules in the detritus may increase the turnover time, which may lead to an increase in soil organic carbon (SOC).


1996 ◽  
Vol 47 (2) ◽  
pp. 199 ◽  
Author(s):  
JR Wilson ◽  
PM Kennedy

Effects of artificial shading to 50% sunlight of nitrogen (N) limited tropical pastures of different grass species on a high (clay loam) and low (granitic loam) fertility soil type were evaluated in a semi-arid. subtropical environment over 3 years. The hypothesis was tested that shade can stimulate shoot growth by providing a modified environment more conducive to organic matter breakdown leading to increased mineralisation and availability of soil N, and the ability of tropical grasses to take advantage of this effect was examined. Unfertilised pastures of green panic (Panicum maximum var. trichoglume), buffel (Cenchrus ciliaris). rhodes (Chloris gayana), and speargrass (Heteropogon contortus) in full sun or shaded by sarlon cloth were sampled on 9 occasions. Additional green panic plots on both soils were irrigated for the first 2 years, and all other plots were dependent on natural rainfall. Shoot and root dry matter and N yield, and soil nitrate and ammonia N, were measured. In one set of green panic plots on each soil, canopy. litter, and surface soil temperatures were monitored continuously, and soil moisture at different depths was measured fortnightly. Shade stimulated shoot dry matter yield over the 3 years by up to 37% in green panic. 22% in rhodes, and 9% in speargrass. Shade decreased buffel yield on the clay soil but had no effect on the granitic soil. Relative increases in yield of shoot N were similar to those for shoot dry matter, except for buffel on the granitic soil where N yield was increased by 39% with no increase in shoot growth. Positive shade responses occurred in all 3 years but were reduced by extreme drought in year 3, particularly on the clay soil. Irrigation gave a greater shade response on the clay but not on the granitic soil. Root mass was lower under shade than in full sun. but there was no long-term trend of progressive decrease. and the change in N yield of roots did not appear to explain the gain in shoot N of the shaded pastures. Nitrogen percentage in the youngest expanded leaf was higher in the shade than the sun leaves only after about 2 to 2 5 months of shading. Surface soil nitrate and ammonia concentrations tended to be higher under shade for most harvests. Shade lowered temperature extremes of surface soil and litter by up to 10-12�C, and improved soil water status. compared with the sun plots. Soil water data were analysed to separate effects on plant water stress and soil microbial activity. The consistent positive response of shoot N yield to shade across grass species. weeds, and soil type. the delay in it becoming evident, and its longevity all support the hypothesis that shade enhances organic matter breakdown and N cycling. Harsh surface temperatures and low soil moisture in open sun pastures appear inimical to high microbial activity. Implications for pasture management are discussed. with the caveat that the outlined benefits of artificial shade may not necessarily arise with tree canopies.


Sign in / Sign up

Export Citation Format

Share Document