MSCs-Derived Extracellular Vesicles Carrying miR-212-5p Alleviate Myocardial Infarction-Induced Cardiac Fibrosis via NLRC5/VEGF/TGF-β1/SMAD Axis

Author(s):  
Yijin Wu ◽  
Wenying Peng ◽  
Miaoxian Fang ◽  
Meifen Wu ◽  
Min Wu
2018 ◽  
Vol 46 (4) ◽  
pp. 1555-1565 ◽  
Author(s):  
Dandan Zhao ◽  
Cui Li ◽  
He Yan ◽  
Tianyu Li ◽  
Ming Qian ◽  
...  

Background/Aims: In our previous study, we demonstrated that elevated expression of miR-328 is a potent determinant of cardiac fibrosis during myocardial infarction (MI). In the present study, histological examination revealed progressive fibrosis in transgenic mice overexpressing cardiomyocyte-specific miR-328. This study investigated whether the transfer of miR-328 from cardiomyocytes (CMs) to cardiac fibroblasts (CFs) in a paracrine manner contributes to myocardial fibrosis. Methods: Myocardial infarction was established by the occlusion of the left coronary artery. Masson’s trichrome staining and collagen assays were used to evaluate the progression of fibrosis. The vesicles and translocation of miR-328 in a co-culture assay system were respectively observed using transmission electron microscopy (TEM) and immunofluorescence staining (IF). Real-time PCR was employed to detect the level of miR-328, Col1α1 and Col3α1. The protein expression of Col1α1, TGF-βRIII, p-smad2/3 (phosphorylated-smad2/3) and TGF-β1 were probed using western blot analysis. Results: Cardiomyocyte-specific miR-328 overexpressing transgenic (TG) mice showed enhanced collagen deposition and provoked cardiac fibrosis by the activation of the TGF-β1 pathway, and this effect was abrogated after knockdown of endogenous miR-328 in mice. Correspondingly, the expression of miR-328 was increased in CFs co-cultured with CMs transfected with miR-328 mimics, likely in a paracrine manner. The cardiomyocyte-mediated augmentation of miR-328 contributes to fibrogenesis in CFs, and this pro-fibrotic effect was reversed after the transfection of miR-328 inhibitor in CFs. Conclusion: A novel molecular mechanism for miR-328 derived from CMs as a paracrine signaling mediator of cardiac fibrogenesis further demonstrates that miR-328 is a potential therapeutic target.


2017 ◽  
Vol 42 (6) ◽  
pp. 2207-2219 ◽  
Author(s):  
Jinxia Yuan ◽  
Hongtao Chen ◽  
Dawei Ge ◽  
Yu Xu ◽  
Haihua Xu ◽  
...  

Background/Aims: Cardiac fibrosis after myocardial infarction (MI) has been identified as an important factor in the deterioration of heart function. Previous studies have demonstrated that miR-21 plays an important role in various pathophysiological processes in the heart. However, the role of miR-21 in fibrosis regulation after MI remains unclear. Methods: To induce cardiac infarction, the left anterior descending coronary artery was permanently ligated of mice. First, we explored the expression of miR-21 in the infarcted zone in mice model of MI via RT-qPCR. Next, we examined the effects of TGF-β1 on miR-21 expression in cardiac fibroblasts (CFs). Then, CFs were infected with miR-21 mimics or miR-21 inhibitors to investigate the effects of miR-21 on the process of CFs activation in vitro. Further, bioinformatics analysis and luciferase reporter assay were performed to identify and validate the target gene of miR-21. At last, in-vivo study was done to confirm MiR-21 regulated myocardial fibrosis after MI in mice. Results: MiR-21 was up-regulated in the infarcted zone after MI in vivo. TGF-β1 treatment increased miR-21 expression in CFs. Overexpression of miR-21 promoted the effects of TGF-β1-induced activation of CFs, evidenced by increased expression of Col-1, α-SMA and F-actin, whereas inhibition of miR-21 attenuated the process of fibrosis. Bioinformatics, Western blot analysis and luciferase reporter assay demonstrated that Smad7 is a direct target of miR-21. In addition, in-vivo study revealed that MiR-21 regulated myocardial fibrosis after MI in mice. Conclusion: These findings suggested that miR-21 has a critical role in CF activation and cardiac fibrosis after MI through via TGF-β/Smad7 signaling pathway. Thus, miR-21 promises to be a potential therapy in treatment of cardiac fibrosis after MI.


2021 ◽  
Vol 22 (22) ◽  
pp. 12341
Author(s):  
Yixuan Ma ◽  
Yixin Kuang ◽  
Wenyan Bo ◽  
Qiaoqin Liang ◽  
Wenfei Zhu ◽  
...  

Exercise training has been reported to alleviate cardiac fibrosis and ameliorate heart dysfunction after myocardial infarction (MI), but the molecular mechanism is still not fully clarified. Fibroblast growth factor 21 (FGF21) exerts a protective effect on the infarcted heart. This study investigates whether exercise training could increase FGF21 protein expression and regulate the transforming growth factor-β1 (TGF-β1)-Smad2/3-MMP2/9 signaling pathway to alleviate cardiac fibrosis following MI. Male wild type (WT) C57BL/6J mice and Fgf21 knockout (Fgf21 KO) mice were used to establish the MI model and subjected to five weeks of different types of exercise training. Both aerobic exercise training (AET) and resistance exercise training (RET) significantly alleviated cardiac dysfunction and fibrosis, up-regulated FGF21 protein expression, inhibited the activation of TGF-β1-Smad2/3-MMP2/9 signaling pathway and collagen production, and meanwhile, enhanced antioxidant capacity and reduced cell apoptosis in the infarcted heart. In contrast, knockout of Fgf21 weakened the cardioprotective effects of AET after MI. In vitro, cardiac fibroblasts (CFs) were isolated from neonatal mice hearts and treated with H2O2 (100 μM, 6 h). Recombinant human FGF21 (rhFGF21, 100 ng/mL, 15 h) and/or 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR, 1 mM, 15 h) inhibited H2O2-induced activation of the TGF-β1-Smad2/3-MMP2/9 signaling pathway, promoted CFs apoptosis and reduced collagen production. In conclusion, exercise training increases FGF21 protein expression, inactivates the TGF-β1-Smad2/3-MMP2/9 signaling pathway, alleviates cardiac fibrosis, oxidative stress, and cell apoptosis, and finally improves cardiac function in mice with MI. FGF21 plays an important role in the anti-fibrosis effect of exercise training.


2020 ◽  
Vol 11 ◽  
Author(s):  
Bihui Luo ◽  
Zhiyu He ◽  
Shijun Huang ◽  
Jinping Wang ◽  
Dunzheng Han ◽  
...  

Rationale: Cardiac fibrosis is observed in nearly every form of myocardial disease. Long non-coding RNAs (lncRNAs) have been shown to play an important role in cardiac fibrosis, but the detailed molecular mechanism remains unknown.Object: We aimed at characterizing lncRNA 554 expression in murine cardiac fibroblasts (CFs) after myocardial infarction (MI) to identify CF-enriched lncRNA and investigate its function and contribution to cardiac fibrosis and function.Methods and Results: In this study, we identified lncRNA NONMMUT022554 (lncRNA 554) as a regulator of MI-induced cardiac fibrosis. We found that lncRNA 554 was significantly up-regulated in the mouse hearts following MI. Further study showed that lncRNA 554 was predominantly expressed in cardiac fibroblasts, indicating a potential role of lncRNA 554 in cardiac fibrosis. In vitro knockdown of lncRNA 554 by siRNA suppressed fibroblasts migration and expression of extracellular matrix (ECM); while overexpression of lncRNA 554 promoted expression of ECM genes. Consistently, lentivirus mediated in vivo knockdown of lncRNA 554 could inhibit cardiac fibrosis and improve cardiac function in mouse model of MI. More importantly, TGF-β1 inhibitor (TEW-7197) could reverse the pro-fibrotic function of lncRNA 554 in CFs. This suggests that the effects of lncRNA 554 on cardiac fibrosis is TGF-β1 dependent.Conclusion: Collectively, our study illustrated the role of lncRNA 554 in cardiac fibrosis, suggested that lncRNA 554 might be a novel target for cardiac fibrosis.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Indrajeet Rana ◽  
Andrew Kompa ◽  
Joanna Skommer ◽  
Suree Lekawanvijit ◽  
Darren J Kelly ◽  
...  

Introduction: A decline in renal function is a common consequence of myocardial infarction (MI) resulting in increased cardiovascular events, known as cardiorenal syndrome (CRS). Although molecular mechanisms contributing to CRS are not well understood, a role for elevated plasma levels of the uremic toxin indoxyl sulphate (IS) and increased fibrosis have been described. MicroRNAs are small endogenously transcribed regulatory RNAs that modulate gene expression and regulate many cardiac processes involved in cardiac dysfunction. Aim: Using a rat model we investigated whether MI leads to changes in expression of cardiac microRNA-21 and microRNA-29, both known to contribute to fibrosis. We also investigated the effect of lowering plasma uremic toxins on cardiac expression of these microRNAs. Methods: MI was induced by coronary artery ligation in male Sprague-Dawley rats. At 16 weeks cardiac function was measured prior to sacrifice. Cardiac tissues were assessed for molecular changes using real-time PCR, western blot analysis and histological methods. Results: MI significantly increased cardiac microRNA-21, collagen1A1, fibronectin-1 and TGFβ1 mRNA expression, as well as cardiac fibrosis and collagen 1 protein expression. Conversely, microRNA-29 expression was reduced in the heart (Table). Treatment with the AST-120 significantly reversed all these changes (Table). MicroRNA-21 levels significantly correlated with mRNA for TGF-β1 (P=0.049; r2=0.17) and its target genes collagen1A1 (P=0.004; r2=0.35) and fibronectin-1 (P=0.003; r2=0.52). MicroRNA-29b levels negatively and significantly correlated with TGF-β1 (P=0.017; r2=0.26) and collagen1A1 (P=0.048; r2=0.18) and fibronectin-1 (P=0.013; r2=0.29). Conclusions: We report a link between the beneficial effects of lowering circulating uremic toxins and microRNAs changes in the heart. Targeting microRNA’s may provide a therapeutic target for the treatment of CRS.


2015 ◽  
Vol 16 (4) ◽  
pp. 316-324 ◽  
Author(s):  
Mingming Zhang ◽  
Xietian Pan ◽  
Qian Zou ◽  
Yuesheng Xia ◽  
Jiangwei Chen ◽  
...  

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Krista L Filomeno ◽  
Sunil G Rattan ◽  
Sheri Bage ◽  
Matthew Zeglinski ◽  
Michael P Czubryt ◽  
...  

Introduction: Coronary heart disease is causal to myocardial infarction (MI) and cardiac fibrosis. Upon ischemic myocardial injury, resident cardiac fibroblasts phenoconvert to myofibroblasts and synthesize large amounts of fibrillar collagens to produce scar tissue. Although the myofibroblast numbers are reduced in the infarct scar following the completion of wound healing, a sub-population of cells persist in the wounded area, leading to maladaptive chronic remodeling of the scar area and eventually the non-infarcted myocardium. Ski has been identified as a repressor of the TGF-β1 signaling pathway, attenuating the myofibroblast phenotype and its functional properties. Scleraxis has been implicated in canonical TGF-β1 signaling to promote collagen1α2 expression. We investigated how Ski and Scleraxis contribute to physiological and pathological wound healing in vivo. Methods: The study was carried out using 64 male Sprague-Dawley rats. The left anterior descending (LAD) coronary artery was ligated to induce a myocardial infarction. Control (sham) operated animals underwent surgery without ligation of the LAD artery. Animals were sacrificed at 2, 4, and 8 weeks post-MI and tissue collected for Western blot and qPCR studies. Results: Scleraxis mRNA expression remained at baseline at 2 and 8 weeks post-MI, but was significantly increased 4 weeks post-MI. Scleraxis protein expression was down-regulated within the scar area of infarcted hearts when compared to control samples 2 and 4 weeks post-MI. Ski mRNA expression was up-regulated within the scar area of infarcted hearts 2, 4 and 8 weeks after infarction. Conclusions: Scleraxis protein is down-regulated in myofibroblasts of the infarct scar in the chronic stages of myocardial infarction, corresponding to the maturation of the scar. At these stages of wound healing, we have previously published that Ski is up-regulated in the cytosol of these same cells. We suggest reciprocal feedback in the expression of these two proteins exists in myofibroblasts in the infarct scar. We hope to learn more about the Ski/Scleraxis feedback loop in pathological wound healing to identify novel therapeutic targets.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jing Guo ◽  
Pengzhou Hang ◽  
Jie Yu ◽  
Wen Li ◽  
Xiuye Zhao ◽  
...  

Abstract Background Myocardial fibrosis is caused by the adverse and powerful remodeling of the heart secondary to the death of cardiomyocytes after myocardial infarction. Regulators of G protein Signaling (RGS) 4 is involved in cardiac diseases through regulating G protein-coupled receptors (GPCRs). Methods Cardiac fibrosis models were established through cardiac fibroblasts (CFs) treatment with transforming growth factor (TGF)-β1 in vitro and mice subjected to myocardial infarction in vivo. The mRNA expression of RGS4, collagen I/III and α-SMA detected by qRT-PCR. Protein level of RGS4, collagen I, CTGF and α-SMA detected by Western blot. The ejection fraction (EF%) and fractional shortening (FS%) of mice were measured by echocardiography. Collagen deposition of mice was tested by Masson staining. Results The expression of RGS4 increased in CFs treatment with TGF-β1 and in MI mice. The model of cardiac fibrosis detected by qRT-PCR and Western blot. It was demonstrated that inhibition of RGS4 expression improved cardiac fibrosis by transfection with small interfering RNA in CFs and injection with lentivirus shRNA in mice. The protective effect of choline against cardiac fibrosis was counteracted by overexpression of RGS4 in vitro and in vivo. Moreover, choline inhibited the protein level of TGF-β1, p-Smad2/3, p-p38 and p-ERK1/2 in CFs treated with TGF-β1, which were restored by RGS4 overexpression. Conclusion This study demonstrated that RGS4 promoted cardiac fibrosis and attenuated the anti-cardiac fibrosis of choline. RGS4 may weaken anti-cardiac fibrosis of choline through TGF-β1/Smad and MAPK signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document