The impact of window opening and other occupant behavior on simulated energy performance in residence halls

2017 ◽  
Vol 10 (6) ◽  
pp. 963-976 ◽  
Author(s):  
Jose G. Cedeno Laurent ◽  
Holly Wasilowski Samuelson ◽  
Yujiao Chen
Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2502
Author(s):  
Jacqueline Nicole Adams ◽  
Zsófia Deme Bélafi ◽  
Miklós Horváth ◽  
János Balázs Kocsis ◽  
Tamás Csoknyai

The goal of this literature review was to outline the research currently conducted on smart meter (SM) adoption and its connection to building occupant behavior to better understand both SM technology and SM customers. We compiled our findings from the existing literature and developed a holistic understanding of the socio-demographic factors that lead to more or less energy use, the methods used to group and cluster occupants on the basis of energy use, how occupant energy use profiles are developed, and which socio-psychological determinants may influence SM adoption. Our results highlight 11 demographic variables that impact building energy use, find 9 methods commonly used to profile occupants on the basis of energy usage, and highlight 13 socio-psychological variables than can be utilized to better understand SM adoption intentions. The review findings two major deficiencies in the existing literature. First, this review highlights the lack of existing interdisciplinary research that combines occupant behavior with SM data and a clear socio-psychological framework. Second, this review underscores certain data limitations in existing SM research, with most research being conducted only on residential or office buildings and geographically in North America or Western Europe. Final policy recommendations center on increased need for interdisciplinary SM research and the need for an expanded understanding of occupant behavior and SM research across different geographies.


2020 ◽  
Vol 12 (14) ◽  
pp. 5820 ◽  
Author(s):  
Giuseppe Salvia ◽  
Eugenio Morello ◽  
Federica Rotondo ◽  
Andrea Sangalli ◽  
Francesco Causone ◽  
...  

Building retrofit is often reported to fail in achieving predicted energy savings; this mismatch in post-retrofit conditions is labeled the ‘energy performance gap’ and may be due to both occupant behavior and technical issues. In this study, the occupant is investigated through a case study of a recently retrofitted public housing in Milan inhabited by 500+ tenants. Informed by social practice theory and interviews to households, concurrent and interdependent elements in heating space are identified—including factors of comfort, competences involved and other interconnected practices. Patterns of continuity and change in setting thermal conditions in this retrofitted building emerge. In this respect, key dynamics of the occupants are related to rooted habits in managing heating, social norms of thermal comfort, mastered skills in dealing with technical devices and infrastructure and ways of organizing other routines such as laundry and forms of entertainment when services are limitedly accessible. The results inform plans for energy efficiency through building retrofit in which the integration of the social dimension and practices may contribute to maximizing the impact of the intervention and to limiting energy performance gap.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6468
Author(s):  
Gianmarco Fajilla ◽  
Marilena De Simone ◽  
Luisa F. Cabeza ◽  
Luís Bragança

Energy performance of buildings is a worldwide increasing investigated field, due to ever more stringent energy standards aimed at reducing the buildings’ impact on the environment. The purpose of this paper is to assess the impact that occupant behavior and climate change have on the heating and cooling needs of residential buildings. With this aim, data of a questionnaire survey delivered in Southern Italy were used to obtain daily use profiles of natural ventilation, heating, and cooling, both in winter and in summer. Three climatic scenarios were investigated: The current scenario (2020), and two future scenarios (2050 and 2080). The CCWorldWeatherGen tool was used to create the weather files of future climate scenarios, and DesignBuilder was applied to conduct dynamic energy simulations. Firstly, the results obtained for 2020 demonstrated how the occupants’ preferences related to the use of natural ventilation, heating, and cooling systems (daily schedules and temperature setpoints) impact on energy needs. Heating energy needs appeared more affected by the heating schedules, while cooling energy needs were mostly influenced by both natural ventilation and usage schedules. Secondly, due to the temperature rise, substantial decrements of the energy needs for heating and increments of cooling energy needs were observed in all the future scenarios where in addition, the impact of occupant behavior appeared amplified.


Author(s):  
Afaan Naqvi ◽  
Cole Roberts ◽  
James Woods ◽  
Michael Dimmel ◽  
Richard Tregaskes

As an increasing number of buildings aspire to significant energy reduction and higher Leadership in Energy and Environmental Design (LEED®) certifications, it is clear that non-regulated process loads are the single greatest remaining opportunity in high performance design. Historically outside the purview of state and national energy design standards, the performance of transformers, elevators, escalators, process systems, and consumer information technology underscore a significant challenge and rising opportunity. This paper examines the impact of non-regulated loads on high performance buildings, ranging from first cost to energy performance and occupant behavior.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4304 ◽  
Author(s):  
Aniela Kaminska

This study aims to provide an experimental assessment of energy consumption in an existing public building in Poland, in order to analyze the impact of occupant behavior on that consumption. The building is naturally ventilated and the occupants have the freedom to change the temperature set point and open or close the windows. The energy consumption is calculated and the calculation results are compared with the experimental data. An analysis of occupants’ behavior has revealed that they choose temperature set points in a wide range recognized as thermal comfort, and window opening is accidental and difficult to predict. The implemented heating control algorithms take into account the strong influence of individual occupant preferences on the feeling of comfort. The energy consumption assessment has revealed that the lowering of temperature set point by 1 °C results in an energy saving of about 5%. Comparisons of energy consumption with heating control and without any controls showed that the potential for energy reduction due to heating control reached approximately 10%. The use of windows control, which allows to turn off the heating after opening the window and its impact on energy savings have been discussed as well.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1226
Author(s):  
Beatriz Fraga-De Cal ◽  
Antonio Garrido-Marijuan ◽  
Olaia Eguiarte ◽  
Beñat Arregi ◽  
Ander Romero-Amorrortu ◽  
...  

Prefabricated solutions incorporating thermal insulation are increasingly adopted as an energy conservation measure for building renovation. The InnoWEE European project developed three technologies from Construction and Demolition Waste (CDW) materials through a manufacturing process that supports the circular economy strategy of the European Union. Two of them consisted of geopolymer panels incorporated into an External Thermal Insulation Composite System (ETICS) and a ventilated façade. This study evaluates their thermal performance by means of monitoring data from three pilot case studies in Greece, Italy, and Romania, and calibrated building simulation models enabling the reliable prediction of energy savings in different climates and use scenarios. Results showed a reduction in energy demand for all demo buildings, with annual energy savings up to 25% after placing the novel insulation solutions. However, savings are highly dependent on weather conditions since the panels affect cooling and heating loads differently. Finally, a parametric assessment is performed to assess the impact of insulation thickness through an energy performance prediction and a cash flow analysis.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4100
Author(s):  
Mariana Huskinson ◽  
Antonio Galiano-Garrigós ◽  
Ángel Benigno González-Avilés ◽  
M. Isabel Pérez-Millán

Improving the energy performance of existing buildings is one of the main strategies defined by the European Union to reduce global energy costs. Amongst the actions to be carried out in buildings to achieve this objective is working with passive measures adapted to each type of climate. To assist designers in the process of finding appropriate solutions for each building and location, different tools have been developed and since the implementation of building information modeling (BIM), it has been possible to perform an analysis of a building’s life cycle from an energy perspective and other types of analysis such as a comfort analysis. In the case of Spain, the first BIM environment tool has been implemented that deals with the global analysis of a building’s behavior and serves as an alternative to previous methods characterized by their lack of both flexibility and information offered to designers. This paper evaluates and compares the official Spanish energy performance evaluation tool (Cypetherm) released in 2018 using a case study involving the installation of sunlight control devices as part of a building refurbishment. It is intended to determine how databases and simplifications affect the designer’s decision-making. Additionally, the yielded energy results are complemented by a comfort analysis to explore the impact of these improvements from a users’ wellbeing viewpoint. At the end of the process the yielded results still confirm that the simulation remains far from reality and that simulation tools can indeed influence the decision-making process.


Sign in / Sign up

Export Citation Format

Share Document