Advanced treatment of bio-treated effluents of printing and dyeing wastewater using sub-micron CaO2/Fe2+ oxidation

2021 ◽  
Vol 14 (7) ◽  
Author(s):  
Jian Zhai ◽  
Chunhua Jiang ◽  
Bangjun Han
2011 ◽  
Vol 356-360 ◽  
pp. 498-501
Author(s):  
Wen Jie Jin ◽  
Fan Chao Zeng ◽  
Han Xue ◽  
Ying Wang

A kind of new adsorption material for wastewater treatment was made of fly ash as the main composition, with addition of sodium silicate, cement and pore forming material as the accessory materials, etc. Three kinds of practical wastewater were treated by using the new material, they were printing and dyeing wastewater, papermaking wastewater and coking wastewater, respectively. The results showed that removal COD efficiencies of the three kinds of wastewater were 57.89%, 71.43%, 80%, respectively, removal color efficiencies were 90%, 92%, 92%, respectively. The new developed material was mainly used for advanced treatment of the effluent water after biochemical process. It will be a substitute for activated carbon materials and have preferable application prospect.


2014 ◽  
Vol 1010-1012 ◽  
pp. 805-808
Author(s):  
Xiu Wen Wu ◽  
Ping Ma ◽  
Hui Xia Lan ◽  
Heng Zhang ◽  
Shan Hong Lan

The influence of H2O2、addition of Fe2+、pH、reaction time and temperature to advanced treatment effect of printing and dyeing wastewater with Fenton oxidation was studied. The results showed that when the addition of H2O2(the concentration was 30%) was 3mL/L,the addition of FeSO4·7H2O was 1.6g/L,pH was 4,the temperature was about 30°C,reacting time was 35min,the COD removal efficiency achieved above 55%,COD of effluent was below 45mg/L.


2014 ◽  
Vol 1048 ◽  
pp. 507-510
Author(s):  
Shan Hong Lan ◽  
Chuan Lu Wang ◽  
Jia Hao Sun ◽  
Heng Zhang

Printing and dyeing wastewater contained difficult biochemical degradation of organic matters. It required advanced treatment after the biochemical treatment. In this paper, effeccts of pH, the amount of iron and hydrogen peroxide, the ratio of iron and hydrogen peroxide and reaction time on the Fe0-H2O2system were studied. The results showed that all the above factors were important to dyeing waste water treatment by Fe0-H2O2system. CODCrremoval efficiency could archive 65% when the initial pH was 3, the iron powder capacity was 1.5g/L,the volume of hydrogen peroxide was 1ml/L, the reaction time was 40 min and the temperature was 30°C.


2013 ◽  
Vol 726-731 ◽  
pp. 2177-2181
Author(s):  
Ling Fei Fan ◽  
Juan Wang ◽  
Di Fan

In this study, we discussed the advanced treatment process of printing and dyeing wastewater with the patented compounded biological filtration equipment (ZL200610069538.3). The experimental samples were collected from the second effluents of a printing and dyeing wastewater treatment plant. With the experiments of four single factors and the dynamic process under four optimum parameters values, discussions were taken in terms of the effects of PFS dosing quantity, hydraulic loading, filter materials volume ratio, and gas water ratio on COD, chromaticity and ammonia nitrogen respectively. The experimental results indicated that the optimum parameter values were PFS dosing quantity of 25mg/L, hydraulic loading of 0.4m3/ (m2·h), filter materials volume ratio (biological carbon over biological zeolite) of 1.2:1, gas water ratio of 4:1 respectively. When influents values ranges of COD, chromaticity and ammonia nitrogen were 90-110mg/L, 60-80times and 3-8mg/L respectively, the effluents of COD, chromaticity and ammonia nitrogen were less than 46mg/L, 10times and 1 mg/L respectively, which could meet the National Standard of Recycling and Miscellaneous Usages of Municipal Sewage on COD, chromaticity and ammonia nitrogen requirements.


2019 ◽  
Vol 118 ◽  
pp. 04009
Author(s):  
Yuan Li ◽  
Jie Liu ◽  
Yibiao Yu ◽  
Hao Zhu ◽  
Zheng Shen ◽  
...  

A more detailed occurrence features of organic matters in the printing and dyeing wastewater, based on its particle size distribution (PSD) and along with a wastewater treatment process, was conducted to provide a support for advanced treatment. Results suggested that, (1) In the dyeing wastewater, the occurrence characteristic of COD was: soluble>supra colloidal>colloidal>settleable; However, for protein, the supra colloidal was dominant, followed by the soluble. The feature of the polysaccharide was consistent with COD’s. In the wastewater, 29.66% of COD could be attributed to proteins and 3.45% of the COD could be attributed to polysaccharides. (2) The relationship among the forms of COD in the primary sedimentation tank, aerobic tank, secondary sedimentation tank, and reverse osmosis-treated concentrated effluent was consistent, that was: soluble>colloidal>supra colloidal>settleable. (3) In the primary sedimentation tank, the settleable COD was almost completely removed; In the aerobic tank, the residual super colloidal COD was not much; After MBR-RO treatment, the COD in the reverse osmosis concentrated water was almost dissolved and only a little presented in other forms.


2021 ◽  
Vol 261 ◽  
pp. 04005
Author(s):  
Emmanuel Nkudede ◽  
Husseini Sulemana ◽  
Bo Zhang ◽  
Kaida Zhu ◽  
Shan Hu ◽  
...  

Owing to its widespread and persistent usage, methylene blue (MB) is an environmental substance, mostly found in the printing and dyeing industry that raises concerns in the environment recently by posing significant threat to human life and the ecosystem as a whole. Thus, there is the need to effectively manage and treat the wastewater from these industries before reaching to the available water sources. Ozonation treatment is very efficient in treating printing and dyeing wastewater (MB) and can be greatly improved by using micro-bubble technology. Microbubble dissolution is an effective way to improve the rate of ozone mass transfer. To discover these properties, a method was used to improve the mass transfer of ozone microbubbles, which was used to effectively treat simulated printing and dyeing wastewater. We investigated the effects of pH, water temperature, ozone flow, and other conditions on the dissolution and attenuation properties of ozone in methylene blue microbubble solutions. Treatment of simulated printing and dyeing wastewater (methylene blue) was investigated under various initial pH and ozone flow rates. A catalytic exhibition was performed towards the decolorization of methylene blue (MB) concentrations and the corresponding COD removal efficiency. Ozone depletion and pH levels played key roles in MB degradation. Under high pH level of 11.01, the rate of removal of COD was 93.5%. Ozone dosage also has direct effect on COD removal efficiency and decolorization. Higher ozone flow rates, 0.4 L/min and 0.5 L/min recorded more than 94% degradation of COD thus very effective and efficient. Also, ozone flow rates 0.3 L/min, 0.4 L/min and 0.5 L/min with initial pH, 7.03, 6.63 and 6.36 decreased to 3.43, 3.49 and 3.44 after reaction processes which clearly shows that with high ozone dosage, pH reduces considerably.


Sign in / Sign up

Export Citation Format

Share Document