Groundwater prospect detection using electrical sounding data in southwestern part of Telangana, India

2021 ◽  
Vol 14 (23) ◽  
Author(s):  
Sreedhar Kuntamalla ◽  
Praveen Raj Saxena
2021 ◽  
Vol 47 (2) ◽  
pp. 520-534
Author(s):  
Ayodele Kehinde Olawuyi

Hydrogeophysical study involving the use of Vertical Electrical Sounding (VES) was carried out in part of the basement complex rocks of Ilorin, central Nigeria, with the aim of determining its geoelectric parameters and groundwater potential. A total of thirty (30) VES were carried out using Schlumberger electrode configuration, with half electrode separation (AB/2) varying from 1m to 100m. Information on the subsurface lithologies, overburden thickness and aquiferous layers were obtained from the different VES locations in the study area. From the quantitative interpretations of the data collected, using the method of curve matching with the Orellana-Mooney master curves and 1-D forward modeling with WinResist 1.0 version software, three to five lithologic units were identified in the study. These include: the topsoil, sandy/lateritic clay/laterite, the weathered basement, the fractured basement and the fresh bedrock which are predominantly of the ‘KH’ curve type (30%), followed by ‘H’ type (26.7%), other type curves include ‘QH’ (16.7%), ‘HKH’, ‘HA’ and ‘A’ (6.7% each) and KQ and KQH (3.3% each). The weathered layer and the fractured basement constitute the main aquifer units. The aquifers are of generally low resistivity values (mostly below 100 Ω-m). The depths to dry bedrock at the chosen VES locations vary from 2.7 to 62.7 m with a mean value of 13.02 m in the study area. The geoelectrical interpretations of data obtained in these areas have permitted the delineation of the study area into low and moderate groundwater potential zones. This study is expected to assist in future planning for groundwater resources. Keywords: Hydrogeophysical, Basement Complex, Groundwater, Electrical Soundings, Weathered, Fractured


Author(s):  
Cyril Chibueze Okpoli ◽  
Blessing omobolanle Akinbulejo

AbstractAeromagnetic and vertical electrical sounding around Ijano, southwestern Nigeria, was investigated for groundwater potential. Aeromagnetic dataset and vertical electrical sounding were acquired and used to investigate the study area. Oasis Montaj, Microsoft Excel and Arc GIS were used to present the results in maps, images and profiles. In order to map out the geological structures of the study area, magnetic image enhancing filters applied to the total magnetic intensity using Geosoft (Oasis Montaj) are reduction to equator, vertical derivative, total horizontal derivative and upward continuation. These filters helped define the lithological boundaries, geological structures, faults, folds and contacts. The lineament of aeromagnetic map was generated from derived field intensity gradients and solutions of Euler deconvolution carried out on the aeromagnetic data using structural index of 0.5 and 1. The processed image shows the lineaments trends majorly towards NE–SW directions. From these combined results of the study area, consistent aeromagnetic lineament map was generated showing the probable positions and trends of the suspected fractured/faulted zone as well as other basement structures. Hydro-lineament density maps based on lineament were produced from the generalized structure trends in the area. The result from the depth sounding data interpretation indicates three curve types which are H, HA and KH, where curve type H has the highest occurrence. The results from the vertical electrical sounding data revealed that the areas with the highest hydro-lineament density are good for groundwater prospect and development. The study has led to the delineation of areas where groundwater occurrences are most promising for sustainable supply, suggesting that an area with high concentrations of lineament density has a high tendency for groundwater prospecting. The results from the study show that the aeromagnetic technique is capable of extracting lineament trends in an inaccessible tropical forest.


Author(s):  
Adebo A. Babatunde ◽  
Ilugbo Stephen Olubusola ◽  
Oladetan Folorunso Emmanuel

A geoelectric investigation of groundwater prospect at Omitogun Estate, along Benin/Ilesha express way Akure, within the basement complex of southwestern Nigeria was carried out with a view to providing information on the geoelectric characteristic of the subsurface sequence, bedrock topography, subsurface structural features and their hydrogeologic significance, in order to identify aquifer units and determine possible areas for groundwater potential zones. The study involved the use of Schlumberger vertical electrical sounding data at thirty (30) stations. The vertical electrical sounding data presented as field curves were interpreted quantitatively by partial curve matching method and computer iteration technique. Fracture resistivity map, aquifer resistivity map, aquifer thickness map and overburden thickness map were generated from the results. Groundwater potential map was also generated from the integration of these maps using multi-criteria decision analysis (MCDA). The study area has been classified into low, medium, high groundwater potential zones and the results from well data across the entire study area were used to validate the accuracy of the groundwater potential map. From the results obtained, it could be concluded that the study area is generalized to be of low groundwater potential.  


Author(s):  
Johnson Cletus Ibuot ◽  
Emmanuel Tochukwu Omeje ◽  
Daniel Nnemeka Obiora

Abstract Vertical electrical sounding employing schlumberger electrode configuration was carried out in thirty locations across some parts of Enugu state, to investigate the hydrokinetic properties of hydrogeologic units of the study area. The result shows that resistivity and thickness of aquifer ranges from 27.3 to 59,569.0 Ωm and 23.3 to 242.1 m respectively. Permeability and fractional porosity values range from 4,531.254 to 74,006.76 mD and 0.026 to 0.159. AQI having a mean value of 13.5451 μm range from 6.809 to 52.976 μm. FZI and HFU values range from 37.582 to 1,962.074 μm and 18 to 26 respectively. Contour maps were generated from the results to visualize the variations of the hydrokinetic properties across the study area. From the contour maps, southern part of the study area was identified to be characterized with high AQI, FZI and HFU with northwestern part and a small proportion along the southwestern part identified as areas with low AQI, FZI and HFU. HFU along the study area was observed to be fractionated into nine distinct properties (HFU 18, HFU 19, HFU 20, HFU 21, HFU 22, HFU 23, HFU 24, HFU 25, and HFU 26) with HFU 19 and HFU 20 dominating the area. The results from the nine hydraulic flow units based on flow zone indicator cut off values (Log FZI>0.25) shows that the reservoir quality is very high.


2021 ◽  
Vol 5 (2) ◽  
pp. 59-66
Author(s):  
Kazeem O.Olomo ◽  
Oluwatoyin K. Olaleye ◽  
Temitayo O. Ale ◽  
Michael T. Asubiojo ◽  
Oluyemi E. Faseki

Assessment of groundwater potential of Iperindo area, Southwestern Nigeria was conducted by mapping spatial distribution of groundwater availability within the area and consequently locating areas of groundwater reserve to serve the community and its environs. This was achieved by integrating geophysical techniques involving landsat ETM-7 satellite data, aeromagnetic data, VLF-EM and electrical resistivity methods to delineate subsurface structures, understand the direction of groundwater flow, and detect the depth to groundwater aquifer. The result of landsat and aeromagnetic revealed some lineament intersection approximately NE-SW direction and interpreted to be potential sites for groundwater development. VLF-EM revealed geologic structures of significant hydrogeological importance at depths of 40 m to 200 m. Vertical electrical sounding (VES) confirmed high groundwater prospect in the areas with estimated depth to water table between 30 m and 100 m. The integrated results of the study revealed adequate groundwater spatial distribution for effective groundwater development in the area.


Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1724-1729 ◽  
Author(s):  
Francisco J. Esparza ◽  
Enrique Gómez‐Treviño

An automatic inverse method has been developed for generating layered earth models from electrical sounding data. The models have the minimum number of layers required to fit a resistivity sounding curve or a combined resistivity and induced polarization sounding. The ground is modeled using a very large number of thin layers to accommodate arbitrary variations. The properties of the layers are optimized using as a constraint the [Formula: see text] norm of the vertical derivative of the resistivity distribution. The use of linear programming leads to piecewise smooth distributions that simulate traditional models made up of a few uniform layers. The process considers from the simplest model of a uniform half‐space to models of many layers, without fixing a priori the number of discontinuities. The solution is sought by iterating a new linear approximation, similar to the classical process of linearization, except that a reference model is not present in either the data vector or the unknown function. For induced polarization soundings, the problem is linear and the solution is obtained in a single iteration, provided an adequate resistivity model is available. The performance of the method is illustrated using numerical experiments and published deep resistivity data from Australia. The method also is applied to combined resistivity and induced polarization soundings from a local groundwater prospect in México.


Sign in / Sign up

Export Citation Format

Share Document