Mathematical modeling of material removal rate in roll-type linear CMP (roll-CMP) process: Effect of polishing pad

Author(s):  
Hyunseop Lee
2016 ◽  
Vol 851 ◽  
pp. 149-154
Author(s):  
Zhen Gang Wu ◽  
Dong Shan He ◽  
Ping Zhou ◽  
Dong Ming Guo

Accurate prediction of the material removal rate (MRR) distribution is very important for the control of the polishing process. However, the widely used prediction method of MRR based on the Preston equation is still incapable of predicting the roll-off phenomenon in polishing process. One of the reasons is that many of the researchers’ neglected the effect of the surface profile of the workpiece on the MRR. In this paper, the evolutionary process of MRR distribution with the change of surface profile using two different polishing pad is studied, it is found that MRR varies gradually with the change of surface profile and tends to be uniform finally. Based on the analysis of contact pressure considering the actual surface profile of workpiece and modified Preston equation, the distribution of MRR is analyzed. It is found that the Preston coefficient distribution on workpiece surface is stable when the surface profile variation is small and shows obvious differences from the center to the edge of the workpiece. Through the comparison it is found that correlation between the regularities of Preston coefficient distribution and the type of polishing pad is significant. The research results in this paper will play an important guiding role in the quantitative prediction method research of polishing process.


2019 ◽  
Vol 13 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Urara Satake ◽  
Toshiyuki Enomoto ◽  
Teppei Miyagawa ◽  
Takuya Ohsumi ◽  
Hidenori Nakagawa ◽  
...  

The demand for improving the image quality of cameras has increased significantly, especially in industrial fields such as broadcasting, on-vehicle, security, factory automation, and medicine. The surface of glass lenses as a key component of cameras is formed and finished by polishing using small tools. The existing polishing technologies, however, exhibit serious problems including an unstable material removal rate over time. In our previous work, the mechanism of time variation in material removal rate was clarified. Based on the findings, a vibration-assisted polishing method using polishing pads containing titanium dioxide particles was developed for improving the stability of the material removal rate with the accumulated polishing time. Our experiments revealed that the proposed polishing method suppressed the time variation significantly in the material removal rate. The developed polishing pads, however, possessed a short life because of their poor wear resistance; as such, they could not be applied to the mass-production process of lenses. In this study, we applied the vibration-assisted polishing method to the polishing process using commercial polishing pads that exhibit sufficient wear resistance for practical use. To investigate the effect of vibration on the stability of the material removal rate, polishing experiments and the observation of slurry flow on the surface of the polishing pads during the vibration-assisted polishing process were conducted. Based on the findings, a new polishing method utilizing a large-amplitude high-frequency vibration applied to the polishing pressure was developed. In addition, a new polishing method utilizing the overhang of a polishing pad, where the polishing pad was moved to hang over the edge of the workpiece for incorporating periodic dressing processes of the polishing pad surface during the polishing process, was also developed. Our polishing experiments revealed that both the proposed polishing methods improved the stability of the material removal rate significantly over the course of the polishing process.


2011 ◽  
Vol 487 ◽  
pp. 238-242 ◽  
Author(s):  
Min Li ◽  
Qiu Sheng Yan ◽  
Jia Bin Lu ◽  
Jing Fu Chai

Method of compound machining is used to process single crystal silicon and SrTiO3 ceramic substrates, and the factors on effects of compound machining are studied such as magnetic field intensity, processing time, rotating speed of lapping plate and lapping pressure. The results show that the roughness of work pieces processed by compound machining are smaller than that by lapping based on cluster MR effect and polyurethane pad polishing process, while the material removal rate is higher than polyurethane pad polishing process, therefore, compound machining shows its synergistic effect between lapping based on cluster MR effect and polyurethane pad polishing process. The type and properties of workpiece material, and machining parameters both have a significant impact on the roughness and material removal rate of compound machining process of polyurethane polishing pad and cluster abrasive brush based on MR effect.


2007 ◽  
Vol 359-360 ◽  
pp. 349-354
Author(s):  
Cong Rong Zhu ◽  
Qin Xu ◽  
Ju Long Yuan ◽  
Dong Hui Wen ◽  
Bing Hai Lv

To obtain the amorphous alloy films with superior properties by method of electrochemical deposition, the accuracy requirement for the copper substrates for Alloy Films is extraordinarily strict. The ultraprecision lapping technology for the copper substrate employing polyurethane polishing pad and flannel pad is studied in this paper, surface roughness, material removal rate and change process of surface construction of copper substrates are discussed. The influences of the different lapping parameters on the surface roughness, material removal rate and the influences of lapping load on copper substrate surface formation in the ultraprecision lapping process of copper substrate are both discussed. Experiment results show that the surface scratch will disappear by employing polyurethane polishing pad and flannel pad, and an extremely smooth surface of copper substrate with roughness 6nm Ra is obtained in the final finishing lapping process.


2010 ◽  
Vol 97-101 ◽  
pp. 1811-1814
Author(s):  
Jing Lin ◽  
Wei Yang ◽  
Yin Biao Guo

This paper researches on the surface change of the wafer in the fast polishing process. Firstly, the revised skin model is used to analyze the pressure distribution when the wafer stays beyond the polishing pad. Secondly, using the skin model and the Preston Equation MRR=k×p×v, the material removal rate is simulated and the surface change is predicted when the large optic plane wafer both has the rotational movement and the linear translation movement. Thirdly, the experiment is done to verify the simulation and prediction. The experiment result is similar to the simulation result. The paper shows a designed movement to predict the surface change.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


Author(s):  
A. Pandey ◽  
R. Kumar ◽  
A. K. Sahoo ◽  
A. Paul ◽  
A. Panda

The current research presents an overall performance-based analysis of Trihexyltetradecylphosphonium Chloride [[CH3(CH2)5]P(Cl)(CH2)13CH3] ionic fluid mixed with organic coconut oil (OCO) during turning of hardened D2 steel. The application of cutting fluid on the cutting interface was performed through Minimum Quantity Lubrication (MQL) approach keeping an eye on the detrimental consequences of conventional flood cooling. PVD coated (TiN/TiCN/TiN) cermet tool was employed in the current experimental work. Taguchi’s L9 orthogonal array and TOPSIS are executed to analysis the influences, significance and optimum parameter settings for predefined process parameters. The prime objective of the current work is to analyze the influence of OCO based Trihexyltetradecylphosphonium Chloride ionic fluid on flank wear, surface roughness, material removal rate, and chip morphology. Better quality of finish (Ra = 0.2 to 1.82 µm) was found with 1% weight fraction but it is not sufficient to control the wear growth. Abrasion, chipping, groove wear, and catastrophic tool tip breakage are recognized as foremost tool failure mechanisms. The significance of responses have been studied with the help of probability plots, main effect plots, contour plots, and surface plots and the correlation between the input and output parameters have been analyzed using regression model. Feed rate and depth of cut are equally influenced (48.98%) the surface finish while cutting speed attributed the strongest influence (90.1%). The material removal rate is strongly prejudiced by cutting speed (69.39 %) followed by feed rate (28.94%) whereas chip reduction coefficient is strongly influenced through the depth of cut (63.4%) succeeded by feed (28.8%). TOPSIS significantly optimized the responses with 67.1 % gain in closeness coefficient.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


Sign in / Sign up

Export Citation Format

Share Document