Real-time Implementation and Flight Tests using Linear and Nonlinear Controllers for a Fixed-wing Miniature Aerial Vehicle (MAV)

2018 ◽  
Vol 16 (1) ◽  
pp. 392-396 ◽  
Author(s):  
Tadeo Espinoza-Fraire ◽  
Alejandro Dzul ◽  
Facundo Cortés-Martínez ◽  
Wojciech Giernacki
Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2810
Author(s):  
Krzysztof Naus ◽  
Piotr Szymak ◽  
Paweł Piskur ◽  
Maciej Niedziela ◽  
Aleksander Nowak

Undoubtedly, Low-Altitude Unmanned Aerial Vehicles (UAVs) are becoming more common in marine applications. Equipped with a Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) receiver for highly accurate positioning, they perform camera and Light Detection and Ranging (LiDAR) measurements. Unfortunately, these measurements may still be subject to large errors-mainly due to the inaccuracy of measurement of the optical axis of the camera or LiDAR sensor. Usually, UAVs use a small and light Inertial Navigation System (INS) with an angle measurement error of up to 0.5∘ (RMSE). The methodology for spatial orientation angle correction presented in the article allows the reduction of this error even to the level of 0.01∘ (RMSE). It can be successfully used in coastal and port waters. To determine the corrections, only the Electronic Navigational Chart (ENC) and an image of the coastline are needed.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2534
Author(s):  
Oualid Doukhi ◽  
Deok-Jin Lee

Autonomous navigation and collision avoidance missions represent a significant challenge for robotics systems as they generally operate in dynamic environments that require a high level of autonomy and flexible decision-making capabilities. This challenge becomes more applicable in micro aerial vehicles (MAVs) due to their limited size and computational power. This paper presents a novel approach for enabling a micro aerial vehicle system equipped with a laser range finder to autonomously navigate among obstacles and achieve a user-specified goal location in a GPS-denied environment, without the need for mapping or path planning. The proposed system uses an actor–critic-based reinforcement learning technique to train the aerial robot in a Gazebo simulator to perform a point-goal navigation task by directly mapping the noisy MAV’s state and laser scan measurements to continuous motion control. The obtained policy can perform collision-free flight in the real world while being trained entirely on a 3D simulator. Intensive simulations and real-time experiments were conducted and compared with a nonlinear model predictive control technique to show the generalization capabilities to new unseen environments, and robustness against localization noise. The obtained results demonstrate our system’s effectiveness in flying safely and reaching the desired points by planning smooth forward linear velocity and heading rates.


2015 ◽  
Vol 74 (1) ◽  
Author(s):  
Muhammad Zaki Mustapa

This paper discusses on attitude control of a quadcopter unmanned aerial vehicle (UAV) in real time application. Newton-Euler equation is used to derive the model of system and the model characteristic is analyzed. The paper describes the controller design method for the hovering control of UAV automatic vertical take-off system. In order to take-off the quadcopter and stable the altitude, PID controller has been designed. The scope of study is to develop an altitude controller of the vertical take-off as realistic as possible. The quadcopter flight system has nonlinear characteristics. A simulation is conducted to test and analyze the control performance of the quadcopter model. The simulation was conducted by using Mat-lab Simulink. On the other hand, for the real time application, the PCI-1711 data acquisition card is used as an interface for controller design which routes from Simulink to hardware. This study showed the controller designs are implemented and tuned to the real system using Real Time Windows Target approach by Mat-Lab Simulink.


Author(s):  
Younsaeng Lee ◽  
Seungjoo Kim ◽  
Jinyoung Suk ◽  
Hueonjoon Koo ◽  
Jongseong Kim

2017 ◽  
Vol 25 (17) ◽  
pp. 20323 ◽  
Author(s):  
Jihua Zhang ◽  
Yizhuo He ◽  
Billy Lam ◽  
Chunlei Guo

2020 ◽  
Vol 5 (1) ◽  
pp. 71-84
Author(s):  
Adhyta Harfan ◽  
Dipo Yudhatama ◽  
Imam Bachrodin

Metode Fotogrametri telah banyak digunakan dalam survei dan pemetaan. Seiring dengan kemajuan ilmu pengetahuan dan teknologi, metode fotogrametri saat ini berbasiskan pesawat tanpa awak atau yang lebih dikenal dengan UAV (Unmanned Aerial Vehicle). Kelebihan metode fotogrametri berbasiskan UAV untuk pengukuran garis pantai adalah memiliki resolusi spasial yang sangat tinggi dan dapat menjagkau daerah-daerah yang sulit dan berbahaya. Di samping itu juga dapat memberikan data foto udara terkini dengan sekala detail. Dalam penelitian ini membandingkan ketelitian horisontal antara hasil pengukuran garis pantai menggunakan metode fotogrametri berbasiskan UAV secara rektifikasi dengan GCP (Ground Control Point) maupun secara PPK (Post Processed Kinematic) dengan pengukuran garis pantai metode GNSS RTK (Real Time Kinematic). Hasil perhitungan ketelitian horisontal mengacu pada standar publikasi IHO S-44 tentang pengukuran garis pantai. Pemotretan dilakukan dengan ketinggian terbang 180 m, dengan tampalan depan dan samping 80%. Hasil perhitungan ketelitian horisontal foto udara terektifikasi 5 GCP, foto udara PPK dan foto udara PPK terektifikasi 1 GCP terhadap pengukuran garis pantai dengan metode GNSS RTK diperoleh nilai standar deviasi (σ) dan 95% selang kepercayaan (CI95%) masing-masing sebagai berikut: σ5gcp=10,989 cm dengan CI95% 16.8 cm < μ < 21.2 cm , σppk=26,066 cm dengan CI95% 26.5 cm < μ < 37 cm dan σppk1gcp=10,378 cm dengan CI95% 15.6 cm < μ < 19.8 cm. Kemudian terdapat 10 objek tematik berdasarkan Peta Laut Nomor 1 yang dapat diinterpretasi pada hasil orthomosaic foto udara.


2019 ◽  
Vol 14 (1) ◽  
pp. 27-37
Author(s):  
Matúš Tkáč ◽  
Peter Mésároš

Abstract An unmanned aerial vehicle (UAVs), also known as drone technology, is used for different types of application in the civil engineering. Drones as a tools that increase communication between construction participants, improves site safety, uses topographic measurements of large areas, with using principles of aerial photogrammetry is possible to create buildings aerial surveying, bridges, roads, highways, saves project time and costs, etc. The use of UAVs in the civil engineering can brings many benefits; creating real-time aerial images from the building objects, overviews reveal assets and challenges, as well as the broad lay of the land, operators can share the imaging with personnel on site, in headquarters and with sub-contractors, planners can meet virtually to discuss project timing, equipment needs and challenges presented by the terrain. The aim of this contribution is to create a general overview of the use of UAVs in the civil engineering. The contribution also contains types of UAVs used for construction purposes, their advantages and also disadvantages.


2020 ◽  
Vol 24 (4) ◽  
pp. 19-26
Author(s):  
Krzysztof Oprzędkiewicz ◽  
Maciej Rosół ◽  
Jakub Żegleń-Włodarczyk

The paper presents the implementation of the basic fractional order element sγ on the STM32 microcontroller platform. The implementation employs the typical CFE and FOBD approximations, the accuracy of approximation as well as duration of calculations are experimentally tested. Microcontroller implementation of fractional order elements is known; however, real-time tests of such implementations have been not presented yet. Results of experiments show that both methods can be implemented at the considered platform. The FOBD approximation is more accurate, but the CFE one is faster. The presented experimental results prove that the STM32F7 family processor could be used to develop the embedded fractional-order control systems for a broad class of linear and nonlinear dynamic systems. This is crucial during the implementation of the fractional-order control in the hard real-time or embedded systems.


Robotica ◽  
2011 ◽  
Vol 30 (5) ◽  
pp. 773-781 ◽  
Author(s):  
Yang Chen ◽  
Jianda Han ◽  
Xingang Zhao

SUMMARYIn this paper, an approach based on linear programming (LP) is proposed for path planning in three-dimensional space, in which an aerial vehicle is requested to pursue a target while avoiding static or dynamic obstacles. This problem is very meaningful for many aerial robots, such as unmanned aerial vehicles. First, the tasks of target-pursuit and obstacle-avoidance are modelled with linear constraints in relative coordination according to LP formulation. Then, two weighted cost functions, representing the optimal velocity resolution, are integrated into the final objective function. This resolution, defined to achieve the optimal velocity, deals with the optimization of a pair of orthogonal vectors. Some constraints, such as boundaries of the vehicle velocity, acceleration, sensor range, and flying height, are considered in this method. A number of simulations, under static and dynamic environments, are carried out to validate the performance of generating optimal trajectory in real time. Compared with ant colony optimization algorithm and genetic algorithm, our method has less parameters to tune and can achieve better performance in real-time application.


Sign in / Sign up

Export Citation Format

Share Document