scholarly journals Demand-Driven Biogas Production from Anaerobic Digestion of Sewage Sludge: Application in Demonstration Scale

Author(s):  
Mauro Lafratta ◽  
Rex B. Thorpe ◽  
Sabeha K. Ouki ◽  
Achame Shana ◽  
Eve Germain ◽  
...  

Abstract The power system needs flexible electricity generators. Whilst electricity generation from anaerobic digestion (AD) of sewage sludge has traditionally been baseload, transforming the generation capacity into a modern flexible operator is an opportunity to further valorise the resource. This work aims to demonstrate that AD of sewage sludge can support flexible generation and be operated dynamically in a relevant operational environment, to promote full scale implementation. A demonstration scale plant (20 m3 conventional AD reactors) was used to test several feeding regimes designed to return a biogas production rate that matches the demand. Two demand profiles are defined, either by common corporate power purchase agreements or by the main balancing mechanism used by the grid operator in UK. Demand-driven biogas production is demonstrated in this relevant operational environment, and the flexibilisation performance is positive in all scenarios. The value of the biogas increases by up to 2%, which outperforms the results obtained at pilot scale. Additionally, an increase in biogas yield is observed. Whilst transitional imbalances are recorded, they last for few hours and the overall stability is not affected. In conclusion, these trials demonstrate demand-driven biogas production is a feasible operational solution and full-scale implementation is possible. Graphical Abstract

Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 487-492 ◽  
Author(s):  
Y. Shang ◽  
B.R. Johnson ◽  
R. Sieger

A steady-state implementation of the IWA Anaerobic Digestion Model No. 1 (ADM1) has been applied to the anaerobic digesters in two wastewater treatment plants. The two plants have a wastewater treatment capacity of 76,000 and 820,000 m3/day, respectively, with approximately 12 and 205 dry metric tons sludge fed to digesters per day. The main purpose of this study is to compare the ADM1 model results with full-scale anaerobic digestion performance. For both plants, the prediction of the steady-state ADM1 implementation using the suggested physico-chemical and biochemical parameter values was able to reflect the results from the actual digester operations to a reasonable degree of accuracy on all parameters. The predicted total solids (TS) and volatile solids (VS) concentration in the digested biosolids, as well as the digester volatile solids destruction (VSD), biogas production and biogas yield are within 10% of the actual digester data. This study demonstrated that the ADM1 is a powerful tool for predicting the steady-state behaviour of anaerobic digesters treating sewage sludges. In addition, it showed that the use of a whole wastewater treatment plant simulator for fractionating the digester influent into the ADM1 input parameters was successful.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3146 ◽  
Author(s):  
Przemysław Seruga ◽  
Małgorzata Krzywonos ◽  
Marta Wilk

Anaerobic digestion (AD) has been used widely as a form of energy recovery by biogas production from the organic fraction of municipal solid wastes (OFMSW). The aim of this study was to evaluate the effect of the introduction of co-substrates (restaurant wastes, corn whole stillage, effluents from the cleaning of chocolate transportation tanks) on the thermophilic anaerobic digestion process of the mechanically separated organic fraction of municipal solid wastes in a full-scale mechanical-biological treatment (MBT) plant. Based on the results, it can be seen that co-digestion might bring benefits and process efficiency improvement, compared to mono-substrate digestion. The 15% addition of effluents from the cleaning of chocolate transportation tanks resulted in an increase in biogas yield by 31.6%, followed by a 68.5 kWh electricity production possibility. The introduction of 10% corn stillage as the feedstock resulted in a biogas yield increase by 27.0%. The 5% addition of restaurant wastes contributed to a biogas yield increase by 21.8%. The introduction of additional raw materials, in fixed proportions in relation to the basic substrate, increases biogas yield compared to substrates with a lower content of organic matter. In regard to substrates with high organic loads, such as restaurant waste, it allows them to be digested. Therefore, determining the proportion of different feedstocks to achieve the highest efficiency with stability is necessary.


2017 ◽  
Vol 68 (6) ◽  
pp. 1294-1297 ◽  
Author(s):  
Gabriela Alina Dumitrel ◽  
Adrian Eugen Cioabla ◽  
Ioana Ionel ◽  
Lucia Ana Varga

Anaerobic digestion processes of agricultural resources, as single substrates (wheat bran and barley) or as combination of substrates (75 % corn&25% corn cob � named MIX1 and 40 % corn & 40 % wheat&20 % sunflower husks � named MIX2), were performed, at a mesophilic temperature in a batch reactor, at pilot scale. The results proved that the higher quantity of biogas yield was achieved for barley, followed by MIX1, and finally MIX2. The same order was obtained when the total methane production was evaluated. The performances of digesters were mathematically evaluated by using the modified Gompertz equation. The kinetic parameters, such as the methane production potential (MP), the maximum methane production rate (Rm) and the extent of lag phase (l) were calculated, for each experimental case. The values of the performance indicators confirmed that all the models fitted well with the experimental data.


2006 ◽  
Vol 53 (12) ◽  
pp. 229-236 ◽  
Author(s):  
J. Zábranská ◽  
M. Dohányos ◽  
P. Jeníček ◽  
J. Kutil

Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15–26%, organic matter in digested sludge significantly decreased to 48–49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.


2010 ◽  
Vol 61 (6) ◽  
pp. 1363-1372 ◽  
Author(s):  
S. I. Pérez-Elvira ◽  
L. C. Ferreira ◽  
A. Donoso-Bravo ◽  
M. Fdz-Polanco ◽  
F. Fdz-Polanco

The use of ultrasound as pre-treatment to improve anaerobic digestion of secondary sludge has been established as a promising technology. There are great differences between lab scale and full-scale devices, regarding the relationship between the disintegration achieved and the energy supplied. Based on economic aspects, most of the full-scale plants use partial-stream instead of the full-stream sonication, which affects biogas production and digestate dewatering characteristics. A laboratory scale operation combining ultrasound and anaerobic digestion (batch tests) has been performed, determining the relationship between the ratio of sonicated sludge fed and the methane production, SCOD removal and capillary suction time after 20-day anaerobic biodegradation, in order to check the possible benefits of part-stream versus full-stream sonication. Additional incubation was also evaluated, searching for an optimum process combining ultrasound and 24-h incubation pretreatment. Results showed that by sonicating fresh WAS at 25,700 kJ/kg TS biogas yield increased linearly with the percentage of sonicated WAS in the substrate, from 248 (control reactor) to 349 mL CH4/g VS (41% increase in full-stream sonication). By incubation (24 h, 55°C), 325 mL CH4/g VS were obtained (31% increase), but the digestion of the soluble compounds generated during incubation of sonicated sludge appeared to be less degradable compared to those solubilised by ultrasound or incubation alone, which showed no benefit in combining both treatments. Post-digestion dewatering deteriorated for both part-stream and full-stream sonication, and CST values were constant (74% higher than the control digestate) from 30% to 100% sonicated sludge.


2004 ◽  
Vol 49 (10) ◽  
pp. 163-169 ◽  
Author(s):  
J. la Cour Jansen ◽  
C. Gruvberger ◽  
N. Hanner ◽  
H. Aspegren ◽  
 Svärd

Anaerobic digestion of sludge has been part of the treatment plant in Malmö for many years and several projects on optimisation of the digestion process have been undertaken in full scale as well as in pilot scale. In order to facilitate a more sustainable solution in the future for waste management, solid waste organic waste is sorted out from households for anaerobic treatment in a newly built city district. The system for treatment of the waste is integrated in a centralised solution located at the existing wastewater treatment plant. A new extension of the digester capacity enables separate as well as co-digestion of sludge together with urban organic waste from households, industry, restaurants, big kitchens, food stores, supermarkets, green markets etc. for biogas production and production of fertiliser. Collection and pre-treatment of different types of waste are in progress together with examination of biogas potential for different types of organic waste. Collection of household waste as well as anaerobic digestion in laboratory and pilot scale has been performed during the last year. It is demonstrated that organic household waste can be digested separately or in combination with sludge. In the latter case a higher biogas yield is found than should be expected from digestion of the two materials separately. Household waste from a system based on collection of organic waste from grinders could be digested at mesophilic conditions whereas digestion failed at thermophilic conditions.


2018 ◽  
Vol 7 (3.36) ◽  
pp. 170
Author(s):  
Umar M. Ibrahim ◽  
Saeed I. Ahmed ◽  
Babagana Gutti ◽  
Idris M. Muhammad ◽  
Usman D. Hamza ◽  
...  

The combination of Irish potato waste (IPW) and poultry waste (PW) can form a synergy resulting into an effective substrate for a better biogas production due to some materials they contain. In this work, optimization and kinetic study of biogas production from anaerobic digestion of IPW and PW was investigated. Response surface methodology (RSM) was applied to optimize conditions such as initial pH, solids concentrations and waste ratios. The anaerobic digestion of the two wastes was carried out in the mesophilic condition and Box-Behnken design (BBD) was used to develop and analyze a predictive model which describes the biogas yield. The results revealed that there is a good fit between the experimental and the predicted biogas yield as revealed by the coefficient of determination (R2) value of 97.93%. Optimization using quadratic RSM predicts biogas yield of 19.75% at the optimal conditions of initial pH value 7.28, solids concentration (w/v) 9.85% and waste ratio (IPW:PW) 45:55%. The reaction was observed to have followed a first order kinetics having R2 and relative squared error (RSE) values of 90.61 and 9.63% respectively. Kinetic parameters, such as rate constant and half-life of the biogas yield were evaluated at optimum conditions to be 0.0392 day-1 and 17.68 days respectively. The optimum conditions and kinetic parameters generated from this research can be used to design real bio-digesters, monitor substrate concentrations, simulate biochemical processes and predict performance of bio-digesters using IPW and PW as substrate.  


2021 ◽  
pp. 33-38
Author(s):  
Владимир Владимирович Житков ◽  
Борис Николаевич Федоренко

Ультразвуковая предварительная обработка считается экологически чистым процессом для повышения биоразлагаемости органических веществ при анаэробном сбраживании. Однако количество потребляемой энергии во время предварительной обработки является проблемой, особенно в тех случаях, когда производство энергии является основной целью биогазовой установки. Основной целью настоящего исследования работы было изучение эффективности ультразвуковой предварительной обработки для увеличения производства биогаза из отходов пивоваренного производства - пивной дробины. Результаты показали, что применение частоты 40 кГц при температуре 40 °С соответственно привело к увеличению выхода биогаза на 83%. Методология показала положительный результат в отношении содержания метана и скорости производства биогаза. Использование ультразвуковой предварительной обработки в отношении пивоваренной дробины для производства биогаза, по-видимому, позволяет решить проблемы не только эффективной утилизации пивоваренных отходов, но и создать экономически эффективный ресурс возобновляемой энергии на пивоваренном или аффилированном с ним производстве. Ultrasonic pretreatment is considered an environmentally friendly process to increase the biodegradability of organic substances during anaerobic digestion. However, the amount of energy consumed during pretreatment is a problem, especially in cases where energy production is the main purpose of the biogas plant. The main purpose of this study was to study the effectiveness of ultrasonic pretreatment to increase the production of biogas from brewing waste - brewer's grains. The results showed that the use of a frequency of 40 kHz at a temperature of 40 °C, respectively, led to an increase in the biogas yield by 83%. The methodology showed a positive result in terms of methane content and biogas production rate. The use of ultrasonic pretreatment for brewing spent grains for biogas production seems to solve the problems of not only efficient disposal of brewing waste, but also to create an economically efficient resource of renewable energy in brewing or its affiliated production.


Sign in / Sign up

Export Citation Format

Share Document