scholarly journals MulStepNET: stronger multi-step graph convolutional networks via multi-power adjacency matrix combination

Author(s):  
Xun Liu ◽  
Fangyuan Lei ◽  
Guoqing Xia

AbstractGraph convolutional networks (GCNs) have become the de facto approaches and achieved state-of-the-art results for circumventing many real-world problems on graph-structured data. However, these networks are usually shallow due to the over-smoothing of GCNs with many layers, which limits the expressive power of learning graph representations. The current methods of solving the limitations have the bottlenecks of high complexity and many parameters. Although Simple Graph Convolution (SGC) reduces the complexity and parameters, it fails to distinguish the feature information of neighboring nodes at different distances. To tackle the limits, we propose MulStepNET, a stronger multi-step graph convolutional network architecture, that can capture more global information, by simultaneously combining multi-step neighborhoods information. When compared to existing methods such as GCN and MixHop, MulStepNET aggregates neighborhoods information at more distant distances via multi-power adjacency matrix while fitting fewest parameters and being computationally more efficient. Experiments on citation networks including Pubmed, Cora, and Citeseer demonstrate that the proposed MulStepNET model improves over SGC by 2.8, 3.3, and 2.1% respectively while keeping similar stability, and achieves better performance in terms of accuracy and stability compared to other baselines.

Author(s):  
Hao Chen ◽  
Fuzhen Zhuang ◽  
Li Xiao ◽  
Ling Ma ◽  
Haiyan Liu ◽  
...  

Recently, Graph Convolutional Networks (GCNs) have proven to be a powerful mean for Computer Aided Diagnosis (CADx). This approach requires building a population graph to aggregate structural information, where the graph adjacency matrix represents the relationship between nodes. Until now, this adjacency matrix is usually defined manually based on phenotypic information. In this paper, we propose an encoder that automatically selects the appropriate phenotypic measures according to their spatial distribution, and uses the text similarity awareness mechanism to calculate the edge weights between nodes. The encoder can automatically construct the population graph using phenotypic measures which have a positive impact on the final results, and further realizes the fusion of multimodal information. In addition, a novel graph convolution network architecture using multi-layer aggregation mechanism is proposed. The structure can obtain deep structure information while suppressing over-smooth, and increase the similarity between the same type of nodes. Experimental results on two databases show that our method can significantly improve the diagnostic accuracy for Autism spectrum disorder and breast cancer, indicating its universality in leveraging multimodal data for disease prediction.


2021 ◽  
Vol 11 (15) ◽  
pp. 6975
Author(s):  
Tao Zhang ◽  
Lun He ◽  
Xudong Li ◽  
Guoqing Feng

Lipreading aims to recognize sentences being spoken by a talking face. In recent years, the lipreading method has achieved a high level of accuracy on large datasets and made breakthrough progress. However, lipreading is still far from being solved, and existing methods tend to have high error rates on the wild data and have the defects of disappearing training gradient and slow convergence. To overcome these problems, we proposed an efficient end-to-end sentence-level lipreading model, using an encoder based on a 3D convolutional network, ResNet50, Temporal Convolutional Network (TCN), and a CTC objective function as the decoder. More importantly, the proposed architecture incorporates TCN as a feature learner to decode feature. It can partly eliminate the defects of RNN (LSTM, GRU) gradient disappearance and insufficient performance, and this yields notable performance improvement as well as faster convergence. Experiments show that the training and convergence speed are 50% faster than the state-of-the-art method, and improved accuracy by 2.4% on the GRID dataset.


Author(s):  
Zhichao Huang ◽  
Xutao Li ◽  
Yunming Ye ◽  
Michael K. Ng

Graph Convolutional Networks (GCNs) have been extensively studied in recent years. Most of existing GCN approaches are designed for the homogenous graphs with a single type of relation. However, heterogeneous graphs of multiple types of relations are also ubiquitous and there is a lack of methodologies to tackle such graphs. Some previous studies address the issue by performing conventional GCN on each single relation and then blending their results. However, as the convolutional kernels neglect the correlations across relations, the strategy is sub-optimal. In this paper, we propose the Multi-Relational Graph Convolutional Network (MR-GCN) framework by developing a novel convolution operator on multi-relational graphs. In particular, our multi-dimension convolution operator extends the graph spectral analysis into the eigen-decomposition of a Laplacian tensor. And the eigen-decomposition is formulated with a generalized tensor product, which can correspond to any unitary transform instead of limited merely to Fourier transform. We conduct comprehensive experiments on four real-world multi-relational graphs to solve the semi-supervised node classification task, and the results show the superiority of MR-GCN against the state-of-the-art competitors.


Information ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 525
Author(s):  
Franz Hell ◽  
Yasser Taha ◽  
Gereon Hinz ◽  
Sabine Heibei ◽  
Harald Müller ◽  
...  

Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance in recommender system benchmarks. Adapting these methods to pharmacy product cross-selling recommendation tasks with a million products and hundreds of millions of sales remains a challenge, due to the intricate medical and legal properties of pharmaceutical data. To tackle this challenge, we developed a graph convolutional network (GCN) algorithm called PharmaSage, which uses graph convolutions to generate embeddings for pharmacy products, which are then used in a downstream recommendation task. In the underlying graph, we incorporate both cross-sales information from the sales transaction within the graph structure, as well as product information as node features. Via modifications to the sampling involved in the network optimization process, we address a common phenomenon in recommender systems, the so-called popularity bias: popular products are frequently recommended, while less popular items are often neglected and recommended seldomly or not at all. We deployed PharmaSage using real-world sales data and trained it on 700,000 articles represented as nodes in a graph with edges between nodes representing approximately 100 million sales transactions. By exploiting the pharmaceutical product properties, such as their indications, ingredients, and adverse effects, and combining these with large sales histories, we achieved better results than with a purely statistics based approach. To our knowledge, this is the first application of deep graph embeddings for pharmacy product cross-selling recommendation at this scale to date.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Zishu Gao ◽  
Guodong Yang ◽  
En Li ◽  
Tianyu Shen ◽  
Zhe Wang ◽  
...  

There are a large number of insulators on the transmission line, and insulator damage will have a major impact on power supply security. Image-based segmentation of the insulators in the power transmission lines is a premise and also a critical task for power line inspection. In this paper, a modified conditional generative adversarial network for insulator pixel-level segmentation is proposed. The generator is reconstructed by encoder-decoder layers with asymmetric convolution kernel which can simplify the network complexity and extract more kinds of feature information. The discriminator is composed of a fully convolutional network based on patchGAN and learns the loss to train the generator. It is verified in experiments that the proposed method has better performances on mIoU and computational efficiency than Pix2pix, SegNet, and other state-of-the-art networks.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3873 ◽  
Author(s):  
Jong Taek Lee ◽  
Eunhee Park ◽  
Tae-Du Jung

Videofluoroscopic swallowing study (VFSS) is a standard diagnostic tool for dysphagia. To detect the presence of aspiration during a swallow, a manual search is commonly used to mark the time intervals of the pharyngeal phase on the corresponding VFSS image. In this study, we present a novel approach that uses 3D convolutional networks to detect the pharyngeal phase in raw VFSS videos without manual annotations. For efficient collection of training data, we propose a cascade framework which no longer requires time intervals of the swallowing process nor the manual marking of anatomical positions for detection. For video classification, we applied the inflated 3D convolutional network (I3D), one of the state-of-the-art network for action classification, as a baseline architecture. We also present a modified 3D convolutional network architecture that is derived from the baseline I3D architecture. The classification and detection performance of these two architectures were evaluated for comparison. The experimental results show that the proposed model outperformed the baseline I3D model in the condition where both models are trained with random weights. We conclude that the proposed method greatly reduces the examination time of the VFSS images with a low miss rate.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2381
Author(s):  
Dan Li ◽  
Kaifeng Zhang ◽  
Zhenbo Li ◽  
Yifei Chen

The statistical data of different kinds of behaviors of pigs can reflect their health status. However, the traditional behavior statistics of pigs were obtained and then recorded from the videos through human eyes. In order to reduce labor and time consumption, this paper proposed a pig behavior recognition network with a spatiotemporal convolutional network based on the SlowFast network architecture for behavior classification of five categories. Firstly, a pig behavior recognition video dataset (PBVD-5) was built by cutting short clips from 3-month non-stop shooting videos, which was composed of five categories of pig’s behavior: feeding, lying, motoring, scratching and mounting. Subsequently, a SlowFast network based spatiotemporal convolutional network for the pig’s multi-behavior recognition (PMB-SCN) was proposed. The results of the networks with variant architectures of the PMB-SCN were implemented and the optimal architecture was compared with the state-of-the-art single stream 3D convolutional network in our dataset. Our 3D pig behavior recognition network showed a top-1 accuracy of 97.63% and a views accuracy of 96.35% on the test set of PBVD and a top-1 accuracy of 91.87% and a views accuracy of 84.47% on a new test set collected from a completely different pigsty. The experimental results showed that this network provided remarkable ability of generalization and possibility for the subsequent pig detection and behavior recognition simultaneously.


Author(s):  
Liang Yang ◽  
Zesheng Kang ◽  
Xiaochun Cao ◽  
Di Jin ◽  
Bo Yang ◽  
...  

In the past few years, semi-supervised node classification in attributed network has been developed rapidly. Inspired by the success of deep learning, researchers adopt the convolutional neural network to develop the Graph Convolutional Networks (GCN), and they have achieved surprising classification accuracy by considering the topological information and employing the fully connected network (FCN). However, the given network topology may also induce a performance degradation if it is directly employed in classification, because it may possess high sparsity and certain noises. Besides, the lack of learnable filters in GCN also limits the performance. In this paper, we propose a novel Topology Optimization based Graph Convolutional Networks (TO-GCN) to fully utilize the potential information by jointly refining the network topology and learning the parameters of the FCN. According to our derivations, TO-GCN is more flexible than GCN, in which the filters are fixed and only the classifier can be updated during the learning process. Extensive experiments on real attributed networks demonstrate the superiority of the proposed TO-GCN against the state-of-the-art approaches.


2020 ◽  
Vol 34 (04) ◽  
pp. 5892-5899
Author(s):  
Ke Sun ◽  
Zhouchen Lin ◽  
Zhanxing Zhu

Graph Convolutional Networks (GCNs) play a crucial role in graph learning tasks, however, learning graph embedding with few supervised signals is still a difficult problem. In this paper, we propose a novel training algorithm for Graph Convolutional Network, called Multi-Stage Self-Supervised (M3S) Training Algorithm, combined with self-supervised learning approach, focusing on improving the generalization performance of GCNs on graphs with few labeled nodes. Firstly, a Multi-Stage Training Framework is provided as the basis of M3S training method. Then we leverage DeepCluster technique, a popular form of self-supervised learning, and design corresponding aligning mechanism on the embedding space to refine the Multi-Stage Training Framework, resulting in M3S Training Algorithm. Finally, extensive experimental results verify the superior performance of our algorithm on graphs with few labeled nodes under different label rates compared with other state-of-the-art approaches.


Author(s):  
Min Shi ◽  
Yufei Tang ◽  
Xingquan Zhu ◽  
David Wilson ◽  
Jianxun Liu

Networked data often demonstrate the Pareto principle (i.e., 80/20 rule) with skewed class distributions, where most vertices belong to a few majority classes and minority classes only contain a handful of instances. When presented with imbalanced class distributions, existing graph embedding learning tends to bias to nodes from majority classes, leaving nodes from minority classes under-trained. In this paper, we propose Dual-Regularized Graph Convolutional Networks (DR-GCN) to handle multi-class imbalanced graphs, where two types of regularization are imposed to tackle class imbalanced representation learning. To ensure that all classes are equally represented, we propose a class-conditioned adversarial training process to facilitate the separation of labeled nodes. Meanwhile, to maintain training equilibrium (i.e., retaining quality of fit across all classes), we force unlabeled nodes to follow a similar latent distribution to the labeled nodes by minimizing their difference in the embedding space. Experiments on real-world imbalanced graphs demonstrate that DR-GCN outperforms the state-of-the-art methods in node classification, graph clustering, and visualization.


Sign in / Sign up

Export Citation Format

Share Document