Bearing capacity of soft soil model treated with end-bearing bottom ash columns

2018 ◽  
Vol 77 (3) ◽  
Author(s):  
Razieh Moradi ◽  
Aminaton Marto ◽  
Ahmad Safuan A. Rashid ◽  
Mohammad Moeen Moradi ◽  
Abideen Adekunle Ganiyu ◽  
...  
2022 ◽  
Vol 961 (1) ◽  
pp. 012057
Author(s):  
BA Al-Dawoodi ◽  
MQ Waheed ◽  
FH Rahil

Abstract This study discusses the results of simulation a finite element analysis of the load-settlement curve using soft soil model of shallow foundation subjected to axial load rested on three different types of clayey soils, it was considered different shear strength parameters (C=16, C=25, and C=70). It was concluded for clayey soil of C=16, there was a match to the experimental load – settlement curve using the soft soil model. It was also observed increase in the foundation width led to an increase in bearing capacity, however, bearing capacity increased by around (79 %) for an increase in footing width of (6.25), so it was about (144%) for (12.5).


2021 ◽  
Vol 14 (4) ◽  
pp. 651-680
Author(s):  
Ammar Alnmr

Choosing and calibrating a robust and accurate soil material model (constitutive model) is the first important step in geotechnical numerical modelling. A less accurate model leads to poor results and more difficulty estimating true behaviour in the field. Subsequent design work is compromised and may lead to dangerous and costly mistakes. In this research, laboratory experimental results were used as a basis to evaluate several soil material models offered in Plaxis2D software. The deciding feature of the soil model was how well it could represent effects of percentage of fine material within sandy soils to simulate its behaviour. Results indicate that the Hardening Soil (HS) model works well when the percentage of fine (soft) materials is less than 10%. Above that level, the Soft Soil model (SS) becomes the most suitable.  Finally, some important conclusions about this research and recommendations for future research are highlighted.


Author(s):  
Me ti ◽  
Tri Harianto ◽  
Abdul Rachman Djamaluddin ◽  
Achmad Bakri Muhiddin

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhe Wang ◽  
Shuwei Wu ◽  
Kaiwen Weng ◽  
Wangjing Yao ◽  
Sifa Xu ◽  
...  

Fiber-reinforced polymer (FRP) composite sheet piles are usually favored for slope and river-retaining structures due to their construction and environmental efficiency. Their applications, however, have been hindered by the lack of understanding of the bearing capacity. This paper studies the vertical and lateral bearing capacity of FRP composite sheet piles through three full-scale tests conducted in Haiyan, a soft soil site in the Yangtze River Delta of China. In the three tests, we measured the vertical bearing capacity of the FRP composite sheet piles, the bearing capacity of the composite foundation, and the lateral capacity of the FRP composite sheet piles, respectively. The test results show that the Q-S (load on the top of the pile versus settlement) curve of the FRP composite sheet piles exhibits a steep fall while that of the composite foundation is relatively flat. Moreover, the ultimate bearing capacity of the FRP composite sheet piles is measured to reach 23.8 kN while that of the composite foundation increases by 47.1 %, reaching 35.0 kN. It shows that the FRP composite sheet piles under the composite foundation have a favorable bearing performance. Finally, the final horizontal displacement of the FRP composite sheet pile in the reinforced area with anchoring the sheet pile is smaller than the final horizontal displacement in the nonreinforced area, indicating that the horizontal bearing capacity can be significantly improved by anchoring the sheet pile.


2020 ◽  
Vol 12 (12) ◽  
pp. 4843
Author(s):  
Andrzej Głuchowski ◽  
Katarzyna Gabryś ◽  
Emil Soból ◽  
Raimondas Šadzevičius ◽  
Wojciech Sas

The construction of a roads network consumes high amounts of materials. The road materials are required to fulfill high standards like bearing capacity and low settlement susceptibility due to cyclic loading. Therefore, crushed aggregates are the primary subbase construction material. The material-intensity of road engineering leads to depletion of natural resources, and to avoid it, the alternative recycled materials are required to be applied to achieve sustainable development. The anthropogenic soils (AS), which are defined as man-made unbound aggregates, are the response to these requirements. For the successful application of the AS, a series of geotechnical laboratory and field tests were conducted. In this article, we present the set of 58 test results, including California Bearing Ratio (CBR) bearing capacity tests, oedometric tests, and cyclic CBR tests, to characterize the behavior of three AS types and to compare its reaction with natural aggregate (NA). The AS tested in this study are recycled concrete aggregate (RCA), fly ash and bottom ash mix (BS), and blast furnace slag (BFS). The results of the tests show that the AS has similar characteristics to NA, and in some cases, like compression characteristic, RCA and BFS behave a stiffer response to cyclic loading. The test results and analysis presented here extend the knowledge about AS compressibility and AS response to cyclic loading.


2020 ◽  
Vol 857 ◽  
pp. 319-327
Author(s):  
Moataz A. Al-Obaydi ◽  
Zeena A. Al-Kazzaz

Stone columns have been used widely to improve the engineering properties of the weak soil. Most of the previous works considered a circular section for the stone columns. In the present study, finite element analysis has been carried out to investigate the effect of stone columns shape and length on the settlement and bearing capacity of soft soil. Accordingly, three types of cross sectional shape for stone columns have been selected which they are circular, rectangular, and square sections with equivalent area. Various length of columns are adopted with diameter of 0.75m that achieved length to diameter or equivalent diameter ratios (L/d=2, 4, 6, 8, and 10) of columns spacing (S/d=3). The results show that the stone columns has tangible effects on the settlement of the soil while has minor effects on the bearing capacity. The settlement of the treated soil with stone columns have L/d=2, reduces by 18.0, 17.3, and 19.3% for circular, rectangular , and square sections respectively. With increasing length of the columns to L/d=10, further reductions in the settlement obtained of (27.1, 28.1, and 27.0%). Bearing capacity of the soil increased slightly with length of the stone columns. Almost all cross sectional shapes of the columns give bearing capacity about same. The increased in the bearing capacity of the treated soil with stone columns have L/d=2, not exceeded 10% for all sectional types. The average increments in bearing capacity when L/d=10 are 12 and 15% at settlement 50 and 100mm respectively. Insignificant changes in bearing capacity upon increasing length of columns from L/d=2 to 10 of maximum 5%. The plastic zone recedes with the increasing length of the stone columns. Finally, from the results obtained, it can be concluded that the stone columns shape has negligible effects on the settlement and bearing capacity of the soil.


2015 ◽  
Vol 55 (3) ◽  
pp. 529-535 ◽  
Author(s):  
Esteban López López ◽  
Ángel Vega-Zamanillo ◽  
Miguel A. Calzada Pérez ◽  
Alberto Hernández-Sanz
Keyword(s):  

2012 ◽  
Vol 256-259 ◽  
pp. 57-60
Author(s):  
Rong Fang Song ◽  
Ling Yun Lang ◽  
Jing Wang

A case of the long-short-pile composite foundation in liquefied soft soil under a 30-storey high-rise building is presented, in which the long and short piles are made of cement-flyash-gravel (CFG) and lime. A new design calculation method of bearing capacity and settlement of composite foundation is introduced, and the calculated value is compared with the actual measurement. The results show that the liquefaction of soft ground is eliminated and the demand of load and settlement for upper building is met. At the same time, it is proved that the design method is feasible.


Sign in / Sign up

Export Citation Format

Share Document