scholarly journals Natural Killer Cells Are Present in Rag1−/− Mice and Promote Tissue Damage During the Acute Phase of Ischemic Stroke

Author(s):  
Leoni Rolfes ◽  
Tobias Ruck ◽  
Christina David ◽  
Stine Mencl ◽  
Stefanie Bock ◽  
...  

AbstractRag1−/− mice, lacking functional B and T cells, have been extensively used as an adoptive transfer model to evaluate neuroinflammation in stroke research. However, it remains unknown whether natural killer (NK) cell development and functions are altered in Rag1−/− mice as well. This connection has been rarely discussed in previous studies but might have important implications for data interpretation. In contrast, the NOD-Rag1nullIL2rgnull (NRG) mouse model is devoid of NK cells and might therefore eliminate this potential shortcoming. Here, we compare immune-cell frequencies as well as phenotype and effector functions of NK cells in Rag1−/− and wildtype (WT) mice using flow cytometry and functional in vitro assays. Further, we investigate the effect of Rag1−/− NK cells in the transient middle cerebral artery occlusion (tMCAO) model using antibody-mediated depletion of NK cells and adoptive transfer to NRG mice in vivo. NK cells in Rag1−/− were comparable in number and function to those in WT mice. Rag1−/− mice treated with an anti-NK1.1 antibody developed significantly smaller infarctions and improved behavioral scores. Correspondingly, NRG mice supplemented with NK cells were more susceptible to tMCAO, developing infarctions and neurological deficits similar to Rag1−/− controls. Our results indicate that NK cells from Rag1−/− mice are fully functional and should therefore be considered in the interpretation of immune-cell transfer models in experimental stroke. Fortunately, we identified the NRG mice, as a potentially better-suited transfer model to characterize individual cell subset-mediated neuroinflammation in stroke.

2020 ◽  
Vol 217 (12) ◽  
Author(s):  
Zhiguo Li ◽  
Minshu Li ◽  
Samuel X. Shi ◽  
Nan Yao ◽  
Xiaojing Cheng ◽  
...  

Perihematomal edema (PHE) occurs within hours after intracerebral hemorrhage (ICH), leading to secondary injury manifested by impaired blood–brain barrier (BBB) integrity and destruction of adjacent tissue. To dissect the mechanisms underlying PHE formation, we profiled human and mouse perihematomal tissues and identified natural killer (NK) cells as the predominant immune cell subset that outnumbers other infiltrating immune cell types during early stages of ICH. Unbiased clustering of single-cell transcriptional profiles revealed two major NK cell subsets that respectively possess high cytotoxicity or robust chemokine production features in the brain after ICH, distinguishing them from NK cells of the periphery. NK cells exacerbate BBB disruption and brain edema after ICH via cytotoxicity toward cerebral endothelial cells and recruitment of neutrophils that augment focal inflammation. Thus, brain-bound NK cells acquire new features that contribute to PHE formation and neurological deterioration following ICH.


2022 ◽  
Vol 12 ◽  
Author(s):  
Keun Young Min ◽  
Jimo Koo ◽  
Geunwoong Noh ◽  
Dajeong Lee ◽  
Min Geun Jo ◽  
...  

Effector and regulatory functions of various leukocytes in allergic diseases have been well reported. Although the role of conventional natural killer (NK) cells has been established, information on its regulatory phenotype and function are very limited. Therefore, the objective of this study was to investigate the phenotype and inhibitory functions of transforming growth factor (TGF)-β-producing regulatory NK (NKreg) subset in mice with MC903-induced atopic dermatitis (AD). Interestingly, the population of TGF-β-producing NK cells in peripheral blood monocytes (PBMCs) was decreased in AD patients than in healthy subjects. The number of TGF-β+ NK subsets was decreased in the spleen or cervical lymph node (cLN), but increased in ear tissues of mice with AD induced by MC903 than those of normal mice. We further observed that TGF-β+ NK subsets were largely included in CD1dhiPD-L1hiCD27+ NK cell subset. We also found that numbers of ILC2s and TH2 cells were significantly decreased by adoptive transfer of CD1dhiPD-L1hiCD27+ NK subsets. Notably, the ratio of splenic Treg per TH2 was increased by the adoptive transfer of CD1dhiPD-L1hiCD27+ NK cells in mice. Taken together, our findings demonstrate that the TGF-β-producing CD1dhiPD-L1hiCD27+ NK subset has a previously unrecognized role in suppressing TH2 immunity and ILC2 activation in AD mice, suggesting that the function of TGF-β-producing NK subset is closely associated with the severity of AD in humans.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A824-A824
Author(s):  
Fay Dufort ◽  
Christopher Leitheiser ◽  
Gemma Mudd ◽  
Julia Kristensson ◽  
Alexandra Rezvaya ◽  
...  

BackgroundNatural killer (NK) cells are immune cells that can detect and eliminate tumor cells and bridge innate to adaptive immune responses. Tumor specific activation of NK cells is thus an area of active investigation in immune oncology, but to date has relied on complex biologic modalities (e.g., antibodies, fusion proteins, or cell therapies), each of which has inherent disadvantages in this application. Thus, alternative approaches are warranted. Bicycle® are small (ca. 1.5 kDa), chemically synthetic, structurally constrained peptides discovered via phage display and optimized using structure-driven design and medicinal chemistry approaches. We have now applied this technology to identify Bicycles that bind specifically to the key activating receptors, NKp46 and CD16a. When chemically coupled to tumor antigen binding Bicycles this results in highly potent, antigen-dependent receptor activation and NK cell activation. We term this new class of fully synthetic molecules Bicycle® natural killer- tumor-targeted immune cell agonists (NK-TICAs™) and we will describe their discovery and evaluation in this presentation.MethodsUsing our unique phage display screening platform, we have identified high affinity, selective binders to NKp46 and CD16a. By conjugating the Bicycle® NK cell-engaging binders to a model tumor antigen EphA2-binding Bicycle®, we have developed a bifunctional Bicycle NK-TICA™ molecule. In in vitro functional assays, we evaluated the ability of the Bicycle NK-TICAs™ to induce NK cell activation as well as cell-mediated cytotoxicity and cytokine production in NK-tumor co-culture assays.ResultsWe have developed a novel modular compound with high affinity and selectivity to NK cell receptors with specific tumor targeting capability. We demonstrate potent, selective binding of our Bicycles to receptor-expressing cells and the capability of the bifunctional molecule to induce NK cell function. With Bicycle's novel NK-TICA™ compound, we demonstrate engagement of NK cells, specific activation and function of NK cells, and enhanced EphA2-expressing tumor cytotoxicity, in a dose dependent manner.ConclusionsBicycle NK-TICAs™ are novel therapeutic agents capable of enhancing the landscape of immune oncology. We hypothesize that utilization of Bicycle NK-TICA™ as a multifunctional immune cell engager will promote modulation of NK cells, and infiltration and anti-tumor activity of NK cells in solid tumors. The data presented here provide initial proof of concept for application of the Bicycle technology to drive NK cell-mediated tumor immunity.


1996 ◽  
Vol 184 (6) ◽  
pp. 2119-2128 ◽  
Author(s):  
L.H. Mason ◽  
S.K. Anderson ◽  
W.M. Yokoyama ◽  
H.R.C. Smith ◽  
R. Winkler-Pickett ◽  
...  

Proteins encoded by members of the Ly-49 gene family are predominantly expressed on murine natural killer (NK) cells. Several members of this gene family have been demonstrated to inhibit NK cell lysis upon recognizing their class I ligands on target cells. In this report, we present data supporting that not all Ly-49 proteins inhibit NK cell function. Our laboratory has generated and characterized a monoclonal antibody (mAb) (12A8) that can be used to recognize the Ly-49D subset of murine NK cells. Transfection of Cos-7 cells with known members of the Ly-49 gene family revealed that 12A8 recognizes Ly-49D, but also cross-reacts with the Ly-49A protein on B6 NK cells. In addition, 12A8 demonstrates reactivity by both immunoprecipitation and two-color flow cytometry analysis with an NK cell subset that is distinct from those expressing Ly-49A, C, or G2. An Ly-49D+ subset of NK cells that did not express Ly49A, C, and G2 was isolated and examined for their functional capabilities. Tumor targets and concanovalin A (ConA) lymphoblasts from a variety of H2 haplotypes were examined for their susceptibility to lysis by Ly-49D+ NK cells. None of the major histocompatibility complex class I–bearing targets inhibited lysis of Ly-49D+ NK cells. More importantly, we demonstrate that the addition of mAb 12A8 to Ly-49D+ NK cells can augment lysis of FcγR+ target cells in a reverse antibody-dependent cellular cytotoxicity–type assay and induces apoptosis in Ly49D+ NK cells. Furthermore, the cytoplasmic domain of Ly-49D does not contain the V/IxYxxL immunoreceptor tyrosine-based inhibitory motif found in Ly-49A, C, or G2 that has been characterized in the human p58 killer inhibitory receptors. Therefore, Ly-49D is the first member of the Ly-49 family characterized as transmitting positive signals to NK cells, rather than inhibiting NK cell function.


2020 ◽  
pp. annrheumdis-2019-216786
Author(s):  
Margarita Ivanchenko ◽  
Gudny Ella Thorlacius ◽  
Malin Hedlund ◽  
Vijole Ottosson ◽  
Lauro Meneghel ◽  
...  

ObjectiveCongenital heart block (CHB) with immune cell infiltration develops in the fetus after exposure to maternal Ro/La autoantibodies. CHB-related serology has been extensively studied, but reports on immune-cell profiles of anti-Ro/La-exposed neonates are lacking. In the current study, we characterised circulating immune-cell populations in anti-Ro/La+mothers and newborns, and explored potential downstream effects of skewed neonatal cell populations.MethodsIn total, blood from mothers (n=43) and neonates (n=66) was sampled at birth from anti-Ro/La+ (n=36) and control (n=30) pregnancies with or without rheumatic disease and CHB. Flow cytometry, microarrays and ELISA were used for characterising cells and plasma.ResultsSimilar to non-pregnant systemic lupus erythematosus and Sjögren-patients, anti-Ro/La+mothers had altered B-cell subset frequencies, relative T-cell lymphopenia and lower natural killer (NK)-cell frequencies. Surprisingly, their anti-Ro/La exposed neonates presented higher frequencies of CD56dimCD16hi NK cells (p<0.01), but no other cell frequency differences compared with controls. Type I and II interferon (IFN) gene-signatures were revealed in neonates of anti-Ro/La+ pregnancy, and exposure of fetal cardiomyocytes to type I IFN induced upregulation of several NK-cell chemoattractants and activating ligands. Intracellular flow cytometry revealed IFNγ production by NK cells, CD8+ and CD4+ T cells in anti-Ro/La exposed neonates. IFNγ was also detectable in their plasma.ConclusionOur study demonstrates an increased frequency of NK cells in anti-Ro/La exposed neonates, footprints of type I and II IFN and an upregulation of ligands activating NK cells in fetal cardiac cells after type I IFN exposure. These novel observations demonstrate innate immune activation in neonates of anti-Ro/La+pregnancy, which could contribute to the risk of CHB.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 355-355 ◽  
Author(s):  
Sarah Cooley ◽  
Bree Foley ◽  
Michael R Verneris ◽  
David McKenna ◽  
Xianghua Luo ◽  
...  

Abstract Abstract 355FN2 We have previously shown that adoptive transfer of haploidentical natural killer (NK) cells can induce remissions in patients with refractory or relapsed acute myeloid leukemia (AML). We hypothesize that in vivo expansion of functional NK cells is required for therapeutic efficacy. To achieve the adequate host immune suppression required for expansion we added total body irradiation (TBI) to our lymphodepleting chemotherapy regimen, giving patients fludarabine (Flu) 25 mg/m2 × 5 days, cyclophosphamide (Cy) 60 mg/kg × 2 days, and 400 cGy of TBI. The NK cell product, a CD3- and CD19-depleted lymphapheresis from a haploidentical related donor, was incubated overnight in 1000 U/ml IL-2 and infused followed by 6 doses of alternate day subcutaneous IL-2 (10 million units) to promote in vivo expansion. Because of the increased myelosuppression following the TBI, a CD34-selected filgrastim-mobilized peripheral blood graft from the same donor (target dose >3 × 106 CD34 cells/kg) was given for hematopoietic rescue. Successful in vivo NK cell expansion was prospectively defined as >100 donor-derived NK cells/ml at 14 days after adoptive transfer (by analysis of STR chimerism, % NK and the clinical absolute lymphocyte count). In the 38 evaluable patients, robust in vivo expansion was induced in 50% (absolute donor NK count of 666 ± 134 cells/μL blood), a rate considerably higher than the 10% we observed in a cohort receiving Cy/Flu alone without TBI. Successful NK cell expansion correlated with leukemia clearance (<1% marrow blasts 14 days after NK cell infusion) and remission (leukemia free with donor neutrophil engraftment at day +30; 42 days after NK infusion). Of the 19 patients who achieved NK cell expansion, 89% cleared their leukemia compared to 42% of the non-expanders (p=0.002); and 84% achieved remission vs. 10% of non-expanders (p <.0001). The robust in vivo expansion of adoptively transferred NK cells gave us the unique opportunity to study their function. We studied blood collected from patients 14 days after NK cell infusion and compared it to paired donor samples obtained at steady state from the apheresis products prior to IL-2 stimulation. Using multi-color flow cytometry, we measured CD107a expression (a surrogate marker for NK cell cytotoxicity) on NK cells which we could subset by expression of single inhibitory killer cell immunoglobulin-like receptors (KIR) (CD158a, CD158b and CD158e) or NKG2A. We defined NK subsets as self-KIR+ or non-self KIR+ based on the cognate HLA ligands (C2, C1, Bw4) present in the donor or recipient. The bulk population of in vivo expanded donor NK cells exhibited hyperfunction with 62.4±4.4% degranulation in response to class I negative K562 targets compared to 36.6±3.0% in the donor product samples (N=15; p=0.0043). As expected, the most potent NK cells in the unstimulated donor product were the self-KIR+ subset, which expressed 39.5±3.0% CD107a after incubation with K562 (N=23) compared to either the non-self KIR+subset (13.1±4.0%, N=6; p=0.0001), or the uneducated KIR−/NKG2A− subset (12.4±5.8%, N=10; p<0.0001). Remarkably, all 3 subsets exhibited even greater degranulation activity after 14 days of in vivo expansion where they were exposed to homeostatic factors and the IL-2 administered to the patient. While all subsets expressed more CD107a, the rules of education were maintained. The subset expressing self-KIR that recognized donor HLA ligands degranulated significantly better than the non-self KIR+ subset (53.5±14.1% vs. 34.3±13.6%, p<0.01). Interestingly, the in vivo expanded NK cells with KIR recognizing cognate ligands unique to the recipient also functioned better (53.1±14.3% [recipient self KIR+] vs. 32.4±12.0% [non-self KIR+], N=25 and N=6; p<0.0045), showing that the education status of adult NK cells is dynamic, not fixed. Importantly, the KIR−/NKG2A− subset functioned better after in vivo expansion (39.5±115.3%, N=12), demonstrating that adoptively transferred NK cells can acquire function by two separate mechanisms: 1) acquisition of function through NK cell education; and 2) acquisition of function by homeostatic expansion and cytokine activation. These data suggest that while hyperfunctioning NK cells that expand in vivo after adoptive transfer partially overcome self tolerance, which may augment their anti-leukemic effects, they still follow the rules of NK cell education where self KIR+ cells kill better than non-self KIR+ cells. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 203 (10) ◽  
pp. 2339-2350 ◽  
Author(s):  
Domenico Mavilio ◽  
Gabriella Lombardo ◽  
Audrey Kinter ◽  
Manuela Fogli ◽  
Andrea La Sala ◽  
...  

In this study, we demonstrate that the in vitro interactions between a CD56neg/CD16pos (CD56neg) subset of natural killer (NK) cells and autologous dendritic cells (DCs) from HIV-1–infected viremic but not aviremic individuals are markedly impaired and likely interfere with the development of an effective immune response. Among the defective interactions are abnormalities in the process of reciprocal NK–DC activation and maturation as well as a defect in the NK cell–mediated editing or elimination of immature DCs (iDCs). Notably, the lysis of mature DCs (mDCs) by autologous NK cells was highly impaired even after the complete masking of major histocompatibility complex I molecules, suggesting that the defective elimination of autologous iDCs is at the level of activating NK cell receptors. In this regard, the markedly impaired expression/secretion and function of NKp30 and TNF-related apoptosis-inducing ligand, particularly among the CD56neg NK cell subset, largely accounts for the highly defective NK cell–mediated lysis of autologous iDCs. Moreover, mDCs generated from HIV-1 viremic but not aviremic patients are substantially impaired in their ability to secrete interleukin (IL)-10 and -12 and to prime the proliferation of neighboring autologous NK cells, which, in turn, fail to secrete adequate amounts of interferon-γ.


2016 ◽  
Vol 8 (4) ◽  
pp. 374-385 ◽  
Author(s):  
Zakia Djaoud ◽  
Raphaëlle Riou ◽  
Pierre-Jean Gavlovsky ◽  
Souad Mehlal ◽  
Céline Bressollette ◽  
...  

Among innate cells, natural killer (NK) cells play a crucial role in the defense against cytomegalovirus (CMV). In some individuals, CMV infection induces the expansion of NKG2C+ NK cells that persist after control of the infection. We have previously shown that KIR2DL+ NK cells, in contrast to NKG2C+ NK cells, contribute to controlling CMV infection using a CMV-infected monocyte-derived dendritic cell (MDDC) model. However, the nature of CMV-infected cells contributing to the expansion of the NKG2C+ NK cell subset remains unclear. To gain more insight into this question, we investigated the contribution of NKG2C+ NK cell activation by CMV-infected primary human aortic endothelial cells (EC) isolated from kidney transplant donors, which constitutively express the human leukocyte antigen (HLA)-E molecule. Here, we show that, although classic HLA class I expression was drastically downregulated, nonclassic HLA-E expression was maintained in CMV-infected EC. By comparing HLA expression patterns in CMV-infected EC, fibroblasts and MDDC, we demonstrate a cell-dependent modulation of HLA-E expression by CMV infection. NKG2C+ NK cell degranulation was significantly triggered by CMV-infected EC regardless of the nature of the HLA-E allele product. EC, predominantly present in vessels, may constitute a privileged site for CMV infection that drives a ‘memory' NKG2C+ NK cell subset.


2018 ◽  
Author(s):  
Joseph Cursons ◽  
Fernando Souza-Fonseca-Guimaraes ◽  
Ashley Anderson ◽  
Momeneh Foroutan ◽  
Soroor Hediyeh-Zadeh ◽  
...  

AbstractAnimal models have demonstrated that natural killer (NK) cells can limit the metastatic dissemination of tumors, however their ability to combat established human tumors has been difficult to investigate.A number of computational methods have been developed for the deconvolution of immune cell types within solid tumors. We have taken the NK cell gene signatures from several tools, then curated and expanded this list using recent reports from the literature. Using a gene set scoring method to investigate RNA-seq data from The Cancer Genome Atlas (TCGA) we show that patients with metastatic cutaneous melanoma have an improved survival rate if their tumor shows evidence of greater NK cell infiltration. Furthermore, these survival effects are enhanced in tumors which have a higher expression of NK cell stimuli such as IL-15, suggesting NK cells are part of a coordinated immune response within these patients. Using this signature we then examine transcriptomic data to identify tumor and stromal components which may influence the penetrance of NK cells into solid tumors.These data support a role for NK cells in the regulation of human tumors and highlight potential survival effects associated with increased NK cell activity. Furthermore, our computational analysis identifies a number of potential targets which may help to unleash the anti-tumor potential of NK cells as we enter the age of immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Umut Can Kucuksezer ◽  
Esin Aktas Cetin ◽  
Fehim Esen ◽  
Ilhan Tahrali ◽  
Nilgun Akdeniz ◽  
...  

Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970’s. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don’t express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet’s disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and “bridge” them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document