scholarly journals Effects of gut microbiota–derived extracellular vesicles on obesity and diabetes and their potential modulation through diet

Author(s):  
Ester Díez-Sainz ◽  
Fermín I. Milagro ◽  
José I. Riezu-Boj ◽  
Silvia Lorente-Cebrián

AbstractObesity and diabetes incidence rates are increasing dramatically, reaching pandemic proportions. Therefore, there is an urgent need to unravel the mechanisms underlying their pathophysiology. Of particular interest is the close interconnection between gut microbiota dysbiosis and obesity and diabetes progression. Hence, microbiota manipulation through diet has been postulated as a promising therapeutic target. In this regard, secretion of gut microbiota–derived extracellular vesicles is gaining special attention, standing out as key factors that could mediate gut microbiota-host communication. Extracellular vesicles (EVs) derived from gut microbiota and probiotic bacteria allow to encapsulate a wide range of bioactive molecules (such as/or including proteins and nucleic acids) that could travel short and long distances to modulate important biological functions with the overall impact on the host health. EV-derived from specific bacteria induce differential physiological responses. For example, a high-fat diet–induced increase of the proteobacterium Pseudomonas panacis–derived EV is closely associated with the progression of metabolic dysfunction in mice. In contrast, Akkermansia muciniphila EV are linked with the alleviation of high-fat diet–induced obesity and diabetes in mice. Here, we review the newest pieces of evidence concerning the potential role of gut microbiota and probiotic-derived EV on obesity and diabetes onset, progression, and management, through the modulation of inflammation, metabolism, and gut permeability. In addition, we discuss the role of certain dietary patterns on gut microbiota–derived EV profile and the clinical implication that dietary habits could have on metabolic diseases progression through the shaping of gut microbiota–derived EV.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Maria Pini

Introduction: Sedentary lifestyle and excessive calorie intake are risk factors for CVD. We have demonstrated the cardioprotective effect of exercise in aged mice and the critical role of visceral adiposity and its profibrotic secretome in increasing cardiovascular risks in obesity and aging. The association between exercise, lowered plasma leptin and reduced inflammatory leukocytes has been recently shown in patients with atherosclerosis. It remains unclear whether elevated plasma leptin can preserve or alter cardiovascular function in obesity. Methods: We analyzed the effect of high fat diet (HFD) in C57BL/6J male mice on the heart in terms of function, structure, histology and key molecular markers. Two interventions were used: 1) active fat mass loss via exercise (daily swimming) during HFD; 2) passive fat mass loss via surgical removal of the visceral adipose tissue (VAT lipectomy) followed by HFD. Results: HFD increased body weight and adiposity, leading to higher plasma leptin, glucose and insulin levels, compared to control diet (CD) mice. HFD impaired left ventricle (LV) structure (hypertrophy, interstitial fibrosis) and cardiac function (echocardiography, in vivo hemodynamics). Atria of HFD mice had enhanced pro-inflammatory protein production. Exercise reduced circulating leptin levels in HFD mice by 50%, in line with fat mass loss. In contrast, lipectomy reduced visceral fat mass, but body weight, adiposity and plasma leptin did not change. Both exercise and VAT lipectomy improved cardiac contractility, reversed collagen deposition and oxidative stress in HFD mice. Both interventions downregulated LV pro-inflammatory markers. We proved the role of leptin in cardiac remodeling in vitro by incubating primary cardiac fibroblasts with hyperleptinemic plasma from HFD mice. Remarkably, plasma from HFD-EX (exercise) suppressed the fibro-proliferative and pro-inflammatory responses of cardiac fibroblasts. Conclusions: Leptin directly contribute to cardiac fibrosis in obesity via activation and proliferation of cardiac fibroblasts. Understanding how leptin signals to the heart might have implications in a wide range of CVD, potentially helping early stratification and personalized care.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Chao Kang ◽  
Bin Wang ◽  
Kanakaraju Kaliannan ◽  
Xiaolan Wang ◽  
Hedong Lang ◽  
...  

ABSTRACT Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI) responsible for the development of obesity. Capsaicin (CAP) is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD) supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA) measurements, and phylogenetic reconstruction of unobserved states (PICRUSt) analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae, while it caused lower levels of members of the lipopolysaccharide (LPS)-producing family S24_7. Predicted function analysis (PICRUSt) showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB1) by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation. IMPORTANCE Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP. Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP.


Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 456
Author(s):  
Mihai V. Curtasu ◽  
Valeria Tafintseva ◽  
Zachary A. Bendiks ◽  
Maria L. Marco ◽  
Achim Kohler ◽  
...  

The metabolome and gut microbiota were investigated in a juvenile Göttingen minipig model. This study aimed to explore the metabolic effects of two carbohydrate sources with different degrees of risk in obesity development when associated with a high fat intake. A high-risk (HR) high-fat diet containing 20% fructose was compared to a control lower-risk (LR) high-fat diet where a similar amount of carbohydrate was provided as a mix of digestible and resistant starch from high amylose maize. Both diets were fed ad libitum. Non-targeted metabolomics was used to explore plasma, urine, and feces samples over five months. Plasma and fecal short-chain fatty acids were targeted and quantified. Fecal microbiota was analyzed using genomic sequencing. Data analysis was performed using sparse multi-block partial least squares regression. The LR diet increased concentrations of fecal and plasma total short-chain fatty acids, primarily acetate, and there was a higher relative abundance of microbiota associated with acetate production such as Bacteroidetes and Ruminococcus. A higher proportion of Firmicutes was measured with the HR diet, together with a lower alpha diversity compared to the LR diet. Irrespective of diet, the ad libitum exposure to the high-energy diets was accompanied by well-known biomarkers associated with obesity and diabetes, particularly branched-chain amino acids, keto acids, and other catabolism metabolites.


2016 ◽  
Vol 311 (6) ◽  
pp. E989-E997 ◽  
Author(s):  
Denise E. Lackey ◽  
Raul G. Lazaro ◽  
Pingping Li ◽  
Andrew Johnson ◽  
Angelina Hernandez-Carretero ◽  
...  

Consumption of excess calories results in obesity and insulin resistance and has been intensively studied in mice and humans. The objective of this study was to determine the specific contribution of dietary fat rather than total caloric intake to the development of obesity-associated insulin resistance. We used an intragastric feeding method to overfeed excess calories from a low-fat diet (and an isocalorically matched high-fat diet) through a surgically implanted gastric feeding tube to generate obesity in wild-type mice followed by hyperinsulinemic-euglycemic clamp studies to assess the development of insulin resistance. We show that overfeeding a low-fat diet results in levels of obesity similar to high-fat diet feeding in mice. However, despite a similar body weight, obese high-fat diet-fed mice are more insulin resistant than mice fed an isocaloric low-fat diet. Therefore, increased proportion of calories from dietary fat further potentiates insulin resistance in the obese state. Furthermore, crossover diet studies revealed that reduction in dietary fat composition improves glucose tolerance in obesity. In the context of the current obesity and diabetes epidemic, it is particularly important to fully understand the role of dietary macronutrients in the potentiation and amelioration of disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Shi ◽  
Ruixue Feng ◽  
Jieqi Mao ◽  
Shuangping Liu ◽  
Zhilei Zhou ◽  
...  

Hyperlipidemia is a chronic disorder that is difficult to cure and usually treated with long-term lipid-reducing drugs. Recent trends have led to the use of diet therapies or food-derived strategies in the treatment of such long-term diseases. The Chinese rice wine (huangjiu) contains a wide range of bioactive peptides that are produced during the multi-species fermentation process. To clarify the regulation effects of lipid metabolism and gut microbiota by huangjiu bioactive peptides, three huangjiu peptides were isolated, purified and characterized by hyper-filtration, macroporous resin, gel filtration separation and structural identification. Meanwhile, a mouse model of high-fat diet-induced hyperlipidemia was established to study the effects of huangjiu peptides on serum biomarker, hepatic metabolism and gut microbiota dysbiosis. Experimental results showed that huangjiu peptides T1 and T2 (HpT1, HpT2) treatment alleviated the increase in serum total cholesterol, triglyceride, low-density lipoprotein cholesterol levels and aberrant hepatic lipid accumulation in the high-fat diet-induced hyperlipidemia mice. Furthermore, HpT2 and HpT1 restored the α-diversity and structure of gut microbial community after hyperlipidemia-induced microbiota disturbance compared with simvastatin and HpT3. The administration of HpT2 and HpT1 regulated the microbiota-mediated gut ecology through alterations of characteristic taxa including Lactobacillus, Ileibacterium, Faecalibaculum and Alloprevotella by linear discriminant analysis effect size analysis. Collectively, our results offer new insights into the abilities of food-derived peptides on alleviation of high-fat diet-induced hyperlipidemia, hepatic steatosis and gut dysbiosis in mice.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yong-feng Bai ◽  
Si-wei Wang ◽  
Xiao-xiao Wang ◽  
Yuan-yuan Weng ◽  
Xue-yu Fan ◽  
...  

Abstract Background Flavonoids are reported to modulate the composition of gut microbiota, which play an important role in preventing obesity and associated metabolic diseases. In this study, we investigated the effect of Total Flavonoids of Quzhou Fructus Aurantii Extract (TFQ) on gut microbial community in mice fed with a high-fat diet (HFD). Methods C57BL/6J mice were fed with either a chow diet or HFD with or without oral gavage of TFQ (300 mg/kg/day) for 12 weeks. Results Our data indicate TFQ significantly reduced obesity, inflammatio,n and liver steatosis. TFQ elevates the expression of tight junction proteins and reduces metabolic endotoxemia. In addition, TFQ treatment reverses HFD-induced gut dysbiosis, as indicated by the reduction of Firmicutes to Bacteroidetes ratio, the increase of genera Akkermansia and Alistipes, and the decrease of genera Dubosiella, Faecalibaculum, and Lactobacillus. Conclusion These findings support a prebiotic role of TFQ as a dietary supplement for the intervention of gut dysbiosis and obesity-related metabolic disorders.


Diabetes ◽  
2008 ◽  
Vol 57 (6) ◽  
pp. 1470-1481 ◽  
Author(s):  
P. D. Cani ◽  
R. Bibiloni ◽  
C. Knauf ◽  
A. Waget ◽  
A. M. Neyrinck ◽  
...  

2019 ◽  
Vol 71 (4) ◽  
pp. 453-463 ◽  
Author(s):  
Wanxiu Cao ◽  
Yaoxian Chin ◽  
Xin Chen ◽  
Ye Mi ◽  
Changhu Xue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document