The impact of observation systems on medium-range weather forecasting in a global forecast system

2012 ◽  
Vol 48 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Seung-On Hwang ◽  
Song-You Hong
2007 ◽  
Vol 135 (6) ◽  
pp. 2355-2364 ◽  
Author(s):  
Stéphane Laroche ◽  
Pierre Gauthier ◽  
Monique Tanguay ◽  
Simon Pellerin ◽  
Josée Morneau

Abstract A four-dimensional variational data assimilation (4DVAR) scheme has recently been implemented in the medium-range weather forecast system of the Meteorological Service of Canada (MSC). The new scheme is now composed of several additional and improved features as compared with the three-dimensional variational data assimilation (3DVAR): the first guess at the appropriate time from the full-resolution model trajectory is used to calculate the misfit to the observations; the tangent linear of the forecast model and its adjoint are employed to propagate the analysis increment and the gradient of the cost function over the 6-h assimilation window; a comprehensive set of simplified physical parameterizations is used during the final minimization process; and the number of frequently reported data, in particular satellite data, has substantially increased. The impact of these 4DVAR components on the forecast skill is reported in this article. This is achieved by comparing data assimilation configurations that range in complexity from the former 3DVAR with the implemented 4DVAR over a 1-month period. It is shown that the implementation of the tangent-linear model and its adjoint as well as the increased number of observations are the two features of the new 4DVAR that contribute the most to the forecast improvement. All the other components provide marginal though positive impact. 4DVAR does not improve the medium-range forecast of tropical storms in general and tends to amplify the existing, too early extratropical transition often observed in the MSC global forecast system with 3DVAR. It is shown that this recurrent problem is, however, more sensitive to the forecast model than the data assimilation scheme employed in this system. Finally, the impact of using a shorter cutoff time for the reception of observations, as the one used in the operational context for the 0000 and 1200 UTC forecasts, is more detrimental with 4DVAR. This result indicates that 4DVAR is more sensitive to observations at the end of the assimilation window than 3DVAR.


2020 ◽  
Author(s):  
Ting-Chi Wu ◽  
Milija Zupanski ◽  
Lewis Grasso ◽  
James Fluke ◽  
Heather Cronk ◽  
...  

<p>Unlike large, expensive, and high-risk operational satellites, small/cube satellites (SmallSats) are a small, inexpensive, and a low-risk type of satellite. As a NOAA Cooperative Institute with specialties in satellite data processing and data assimilation, CIRA is funded by a Technology Maturation Program (TMP) research project to help NOAA exploit upcoming constellation of SmallSats to be considered for use in operations. In this research, a CSU-led technology demonstration mission entitled “the Temporal Experiment for Storms and Tropical System - Demonstration (TEMPTEST-D)” is used as an example to explore quick and agile methodologies to entrain SmallSats into the NOAA processing stream. Specifically, a workflow that enables TEMPEST-D data for assimilation into the NCEP Global Forecast System (GFS) with Finite-Volume Cube-Sphered (FV3) dycore (FV3GFS) under the Gridpoint Statistical Interpolation (GSI) based hybrid 4DEnVar system is established.</p><p>One objective of this TMP research project is to assess the impact of SmallSat data on NOAA modeling and assimilation systems used in operations. We begin by asking whether the use of TEMPEST-D data is as good as the use of those obtained from well-established operational satellite sensors. Since the radiometric specification of TEMPEST-D is similar to the Microwave Humidity Sounder (MHS), we address the above question by directly comparing the following three cycled FV3GFS data assimilation and forecasting experiments: 1) the control experiment, which includes all routinely assimilated observations, but only assimilates MHS from the NOAA-19 and MetOp-B platforms, 2) the AddMHS experiment, which is the control plus MHS from the MetOp-A platform, and 3) the AddTEMPEST experiment, which is the control plus TEMPEST-D.</p><p>By differentiating the AddMHS and AddTEMPEST experiments against the control experiment, we will be able to demonstrate that a cost-effective TEMPEST-D is as beneficial as a well-established operational satellite like MHS, in terms of aiding operational global weather forecasting. In addition, results from this research offers implications of the utility of a constellation of SmallSats microwave radiometers for global weather forecasting.  </p>


Author(s):  
Haowen Yue ◽  
Mekonnen Gebremichael ◽  
Vahid Nourani

Abstract Reliable weather forecasts are valuable in a number of applications, such as, agriculture, hydropower, and weather-related disease outbreaks. Global weather forecasts are widely used, but detailed evaluation over specific regions is paramount for users and operational centers to enhance the usability of forecasts and improve their accuracy. This study presents evaluation of the Global Forecast System (GFS) medium-range (1 day – 15 day) precipitation forecasts in the nine sub-basins of the Nile basin using NASA’s Integrated Multi-satellitE Retrievals (IMERG) “Final Run” satellite-gauge merged rainfall observations. The GFS products are available at a temporal resolution of 3-6 hours, spatial resolution of 0.25°, and its version-15 products are available since 12 June 2019. GFS forecasts are evaluated at a temporal scale of 1-15 days, spatial scale of 0.25° to all the way to the sub-basin scale, and for a period of one year (15 June 2019 – 15 June 2020). The results show that performance of the 1-day lead daily basin-averaged GFS forecast performance, as measured through the modified Kling-Gupta Efficiency (KGE), is poor (0 < KGE < 0.5) for most of the sub-basins. The factors contributing to the low performance are: (1) large overestimation bias in watersheds located in wet climate regimes in the northern hemispheres (Millennium watershed, Upper Atbara & Setit watershed, and Khashm El Gibra watershed), and (2) lower ability in capturing the temporal dynamics of watershed-averaged rainfall that have smaller watershed areas (Roseires at 14,110 sq. km and Sennar at 13,895 sq. km). GFS has better bias for watersheds located in the dry parts of the northern hemisphere or wet parts of the southern hemisphere, and better ability in capturing the temporal dynamics of watershed-average rainfall for large watershed areas. IMERG Early has better bias than GFS forecast for the Millennium watershed but still comparable and worse bias for the Upper Atbara & Setit, and Khashm El Gibra watersheds. The variation in the performance of the IMERG Early could be partly explained by the number of rain gauges used in the reference IMERG Final product, as 16 rain gauges were used for the Millennium watershed but only one rain gauge over each Upper Atbara & Setit, and Khashm El Gibra watershed. A simple climatological bias-correction of IMERG Early reduces in the bias in IMERG Early over most watersheds, but not all watersheds. We recommend exploring methods to increase the performance of GFS forecasts, including post-processing techniques through the use of both near-real-time and research-version satellite rainfall products.


2016 ◽  
Vol 113 (42) ◽  
pp. 11765-11769 ◽  
Author(s):  
Banglin Zhang ◽  
Richard S. Lindzen ◽  
Vijay Tallapragada ◽  
Fuzhong Weng ◽  
Qingfu Liu ◽  
...  

The atmosphere−ocean coupled Hurricane Weather Research and Forecast model (HWRF) developed at the National Centers for Environmental Prediction (NCEP) is used as an example to illustrate the impact of model vertical resolution on track forecasts of tropical cyclones. A number of HWRF forecasting experiments were carried out at different vertical resolutions for Hurricane Joaquin, which occurred from September 27 to October 8, 2015, in the Atlantic Basin. The results show that the track prediction for Hurricane Joaquin is much more accurate with higher vertical resolution. The positive impacts of higher vertical resolution on hurricane track forecasts suggest that National Oceanic and Atmospheric Administration/NCEP should upgrade both HWRF and the Global Forecast System to have more vertical levels.


2018 ◽  
Vol 146 (4) ◽  
pp. 1157-1180 ◽  
Author(s):  
Gregory C. Smith ◽  
Jean-Marc Bélanger ◽  
François Roy ◽  
Pierre Pellerin ◽  
Hal Ritchie ◽  
...  

The importance of coupling between the atmosphere and the ocean for forecasting on time scales of hours to weeks has been demonstrated for a range of physical processes. Here, the authors evaluate the impact of an interactive air–sea coupling between an operational global deterministic medium-range weather forecasting system and an ice–ocean forecasting system. This system was developed in the context of an experimental forecasting system that is now running operationally at the Canadian Centre for Meteorological and Environmental Prediction. The authors show that the most significant impact is found to be associated with a decreased cyclone intensification, with a reduction in the tropical cyclone false alarm ratio. This results in a 15% decrease in standard deviation errors in geopotential height fields for 120-h forecasts in areas of active cyclone development, with commensurate benefits for wind, temperature, and humidity fields. Whereas impacts on surface fields are found locally in the vicinity of cyclone activity, large-scale improvements in the mid-to-upper troposphere are found with positive global implications for forecast skill. Moreover, coupling is found to produce fairly constant reductions in standard deviation error growth for forecast days 1–7 of about 5% over the northern extratropics in July and August and 15% over the tropics in January and February. To the authors’ knowledge, this is the first time a statistically significant positive impact of coupling has been shown in an operational global medium-range deterministic numerical weather prediction framework.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 205 ◽  
Author(s):  
Wan-Ru Huang ◽  
Pin-Yi Liu ◽  
Jen-Her Chen ◽  
Liping Deng

During May and June (the Meiyu season) of 2017, Taiwan was affected by three heavy frontal rainfall events, which led to large economic losses. Using satellite observations and reanalysis data, this study investigates the impact of boreal summer intra-seasonal oscillations (BSISOs, including a 30–60 day ISO mode named BSISO1 and a 10–30 day ISO mode named BSISO2) on the heavy rainfall events in Taiwan during the 2017 Meiyu season. Our examinations show that BSISO2 is more important than BSISO1 in determining the formation of heavy rainfall events in Taiwan during the 2017 Meiyu season. The heavy rainfall events generally formed in Taiwan at phases 4–6 of BSISO2, when the enhanced southwesterly wind and moisture flux convergence center propagate northward into the Taiwan area. In addition, we examined the forecast rainfall data (at lead times of one day to 16 days) obtained from the National Centers for Environmental Prediction Global Forecast System (NCEPgfs) and the Taiwan Central Weather Bureau Global Forecast System (CWBgfs). Our results show that the better the model’s capability in forecasting the BSISO2 index is, the better the model’s capability in forecasting the timing of rainfall formation in Taiwan during the 2017 Meiyu season is. These findings highlight the importance of BSISO2 in affecting the rainfall characteristics in East Asia during the Meiyu season.


2006 ◽  
Vol 134 (7) ◽  
pp. 1972-1986 ◽  
Author(s):  
Thomas Jung ◽  
Frederic Vitart

Abstract The ECMWF monthly forecasting system is used to investigate the impact that an interactive ocean has on short-range and medium-range weather predictions in the Northern Hemisphere extratropics during wintertime. On a hemispheric scale the predictive skill for mean sea level pressure (MSLP) with and without an interactive ocean is comparable. This can be explained by the relatively small impact that coupling has on MSLP forecasts. In fact, deterministic and ensemble integrations reveal that the magnitude of forecast error and the perturbation growth due to analysis uncertainties, respectively, by far outweigh MSLP differences between coupled and uncoupled integrations. Furthermore, no significant difference of the ensemble spread between the uncoupled and coupled system is found. The authors’ conclusions apply equally for a number of cases of rapidly intensifying extratropical cyclones in the North Atlantic region. Further experimentation with different atmospheric model versions, different horizontal atmospheric resolutions, and different ocean model formulation reveals the robustness of the findings. The results suggest that (for the cases, resolutions, and model complexities considered is this study) the benefit of using coupled atmosphere–ocean models to carry out 1–10-day MSLP forecasts is relatively small, at least in the Northern Hemisphere extratropics during wintertime.


2010 ◽  
Vol 13 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Huicheng Zhou ◽  
Guolei Tang ◽  
Ningning Li ◽  
Feng Wang ◽  
Yajun Wang ◽  
...  

Forecasts of 10-day average inflow into the Ertan hydropower station of the Yalong river basin are needed for seasonal hydropower operation. Medium-range inflow forecasts have usually been obtained by Auto-Regressive-Moving-Average (ARMA) models, which do not utilize any precipitation forecasts. This paper presents a simple GFS-QPFs-based rainfall - runoff model (GRR) using the 10-day accumulated Quantitative Precipitation Forecasts from the Global Forecast System (GFS-QPFs) run at the American National Oceanic and Atmospheric Administration (NOAA). In this study, 10-day accumulated GFS-QPFs over the Yalong river basin are verified by first using a three-category contingency table. Then this paper presents the results from a proposed hydrological model using 10-day accumulated GFS-QPFs. Results show that inflow forecast errors can be reduced considerably, compared with those from the currently used ARMA model by both quantitative and qualitative analysis. Finally, simulations of medium-range hydropower operation are also presented using the historical data and forecasts of 10-day average inflows into the Ertan dam during May to September 2006 to evaluate the efficiency of the proposed hydrological model using the GFS-QPFs. The simulations demonstrate that the use of GFS-QPFs has improved reservoir inflow predictions and hydropower operation of the Ertan hydropower station in the Yalong river basin during the wet season.


2012 ◽  
Vol 27 (3) ◽  
pp. 700-714 ◽  
Author(s):  
Banghua Yan ◽  
Fuzhong Weng

Abstract The Special Sensor Microwave Imager/Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F-16 satellite is the first conically scanning sounding instrument that provides information on atmospheric temperature and water vapor profiles. The SSMIS data were preprocessed by the Naval Research Laboratory (NRL) using its Unified Preprocessor Package (UPP) and then distributed to the numerical weather prediction centers by the Fleet Numerical Meteorology and Oceanography Center (FNMOC). This dataset was assimilated into the Global Forecast System (GFS) using gridpoint statistical interpolation (GSI). The initial assimilation of the SSMIS data into the GFS did not improve the medium-range (5–7 days) forecast skill. The SSMIS bias (O-B) still changes with location and time after the GSI bias-correction scheme is implemented. This bias characteristic is related to residual calibration errors in the correction of the SSMIS antenna emission and warm target contamination. The large O-B standard deviation is probably due to the large instrument noise in the SSMIS UPP data. The large O-B and its standard deviation for several surface sensitive channels are also caused by uncertainty in surface emissivity. In this study, a new scheme is developed to remove regionally dependent bias using a weekly composite O-B. The SSMIS noise is reduced through a Gaussian function filter. A new emissivity database for snow and sea ice is developed for the SSMIS surface sensitive channels. After applying these algorithms, the quality of the SSMIS low-atmospheric sounding (LAS) data is improved; the surface-sensitive channels can be effectively assimilated, and the impacts of SSMIS LAS data on the medium-range forecast in the GFS are positive and similar to those from Advanced Microwave Sounding Unit-A (AMSU-A) data.


MAUSAM ◽  
2021 ◽  
Vol 61 (2) ◽  
pp. 213-220
Author(s):  
SURYA K. DUTTA ◽  
MUNMUN DAS GUPTA ◽  
V. S. PRASAD

     AMDAR observations from Lufthansa and Lufthansa cargo aircrafts in BUFR format (with header IUADOI EGGR and IUAHOI EGRR) were made available to India Meteorological Department (IMD) and in turn to National Centre for Medium Range Weather Forecasting (NCMRWF) under special arrangement for a period of two weeks w.e.f. 14th May 2008. These data have been assimilated at NCMRWF (National Centre for Medium Range Weather Forecasting) model for the period 14th - 31st May, 2008 to assess its impact on NWP. Use of these observations gave some positive impact on NWP systems.


Sign in / Sign up

Export Citation Format

Share Document