scholarly journals The wastage of the cotton stalks (Gossypium hirsutum L.) as low-cost adsorbent for removal of the Basic Green 5 dye from aqueous solutions

2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Elchin O. Akperov ◽  
Oktay H. Akperov

Abstract Cotton stalks (Gossypium hirsutum L.) waste was investigated as a low-cost and effective adsorbent for the adsorption of Basic Green 5 dye from aqueous solution. The effects of pH solution, initial dye concentration, contact time, sorbent dosage and temperature on the adsorption parameters were investigated. The Langmuir, Freundlich and Dubinin–Radushkevich adsorption models were evaluated using the experimental data. The maximum adsorption capacity was found to be 42.37 mg g−1 from the Langmuir isotherm model at 20 °C. The dimensionless separation factor (RL) values lie between 0.129 and 0.423, indicated favorable adsorption. The adsorption rate data were analyzed according to the Lagergren pseudo-first- and pseudo-second-order kinetic models. It was found that kinetic followed a pseudo-second-order model. The negative values of the ΔG° at 293–323 K and the positive value of the ΔH° (13.585 kJ mol−1) indicate that the sorption process is spontaneous and endothermic in nature. The positive value of ΔS° (0.0467 kJ mol−1 K−1) shows the increasing randomness during adsorption process. The mean adsorption energy from Dubinin–Radushkevich equation was found to be 11.63 kC mol−1, indicating that the adsorption of the Basic Green 5 by cotton stalks occurred through chemical interaction mechanism. The offered mechanism of adsorptive process of the Basic Green 5 dye on a surface of the sorbent, obtained on the basis of cotton stalks, considers forming a complex between dye and sorbent.

Molekul ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 130
Author(s):  
Poedji Loekitowati Hariani ◽  
Fahma Riyanti ◽  
Fatma Fatma ◽  
Addy Rachmat ◽  
Aldi Herbanu

The composites of hydroxyapatite and SiO2 were successfully synthesized. The hydroxyapatite was prepared from golden snail shells (Pomacea canaliculata L). The hydroxyapatite and hydroxyapatite-SiO2 composites were characterized using XRD, FTIR, SEM-EDS. Furthermore, hydroxyapatite and hydroxyapatite-SiO2 composites were used to remove Pb(II) from aqueous solution. Various adsorption parameters such as pH of the solution, contact time, and initial Pb(II) concentration were used to study the adsorption process. The optimum pH of the solution for removal of Pb(II) by hydroxyapatite and hydroxyapatite-SiO2 composite at pH 6 and contact time at 60 minutes. Both adsorbents follow the Langmuir isotherm. The maximum adsorption capacity of the hydroxyapatite-SiO2 composite is greater compare to hydroxyapatite, respectively 135.14 and 123.46 mg/g. The pseudo-second order kinetic model had a correlation coefficient (R2) greater than the pseudo-first order so pseudo-second order kinetic is better to describe adsorption kinetics


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Sumanjit Kaur ◽  
Seema Rani ◽  
Rakesh Kumar Mahajan

The present work aims to investigate the removal of dye congo red from aqueous solutions by two low-cost biowaste adsorbents such as ground nut shells charcoal (GNC) and eichhornia charcoal (EC) under various experimental conditions. The effect of contact time, ionic strength, temperature, pH, dye concentration, and adsorbent dose on the removal of dye was studied. The kinetic experimental data were fitted to pseudo-first order, pseudo-second order, intraparticle diffusion, Elovich model, and Bangham’s model. Results imply that adsorption of congo red on these adsorbents nicely followed the second order kinetic model and maximum adsorption capacity was found to be 117.6 and 56.8 mg g−1for GNC and EC at 318 K, however it increases with increase in temperature for both adsorbents. Equilibrium isotherms were analyzed by Langmuir, Freundlich, Temkin, Dubinin and Radushkevich, and Generalized Isotherms. Freundlich isotherm described the isotherm data with high-correlation coefficients. The results of the present study substantiate that biowaste material GNC and EC are promising adsorbents for the removal of the dye congo red.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Öznur Dülger ◽  
Fatma Turak ◽  
Kadir Turhan ◽  
Mahmure Özgür

Sumac Leaves (SL) (Rhus Coriaria L. ) were investigated as an inexpensive and effective adsorbent for the adsorption of methylene blue (MB) from aqueous solution. The effects of initial dye concentration, initial solution pH, phases contact time, and adsorbent dose on the adsorption of MB on SL were investigated. The amount of dye adsorbed was found to vary with initial solution pH, Sumac Leaves dose, MB concentration, and phases contact time. The Langmuir and Freundlich adsorption models were evaluated using the experimental data and the experimental results showed that the Langmuir model fits better than the Freundlich model. The maximum adsorption capacity was found to be 151.69 mg/g from the Langmuir isotherm model at 25°C. The value of the monolayer saturation capacity of SL was comparable to the adsorption capacities of some other adsorbent materials for MB. The adsorption rate data were analyzed according to the pseudo-first order kinetic and pseudo-second order kinetic models and intraparticle diffusion model. It was found that kinetic followed a pseudo-second order model.


2019 ◽  
Vol 233 (9) ◽  
pp. 1275-1292 ◽  
Author(s):  
Atta ul Haq ◽  
Muhammad Rasul Jan ◽  
Jasmin Shah ◽  
Maria Sadia ◽  
Muhammad Saeed

Abstract The presence of heavy metals in water causes serious problems and their treatment before incorporating into the water body is a challenge for researchers. The present study was conducted to compare the sorption study of Ni (II) using silica gel, amberlite IR-120 and sawdust of mulberry wood in batch system under the influence of pH, initial Ni (II) concentration and contact time. It was observed that sorption process was depending upon pH and maximum sorption was achieved at pH 7.0. Kinetic data were well fitted into pseudo-second order kinetic model due to high R2 values and closeness of experimental sorption capacity and calculated sorption capacity of pseudo-second order. Isotherms study showed that Langmuir is one of the most suitable choices to explain sorption data due to high R2 values. The monolayer sorption capacities of silica gel, amberlite IR-120 and sawdust were found to be 33.33, 25.19, and 33.67 mg g−1, respectively. Desorption study revealed that NaCl is one of the most appropriate desorbent. It may be concluded from this study that sawdust is a suitable sorbent due to low cost, abundant availability and recycling of the materials for further study.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Hülya Karaca ◽  
Turgay Tay ◽  
Merih Kıvanç

The biosorption of lead ions (Pb2+) onto lyophilized fungus Aspergillus niveus was investigated in aqueous solutions in a batch system with respect to pH, contact time and initial concentration of the ions at 30 °C. The maximum adsorption capacity of lyophilized A. niveus was found to be 92.6 mg g−1 at pH 5.1 and the biosorption equilibrium was established about in 30 min. The adsorption capacity obtained is one of the highest value among those reported in the literature. The kinetic data were analyzed using the pseudo-first-order kinetic, pseudo-second-order kinetic, and intraparticle diffusion equations. Kinetic parameters, such as rate constants, equilibrium adsorption capacities, and related correlation coefficients for the kinetic models were calculated and discussed. It was found that the adsorption of lead ions onto lyophilized A. niveus biomass fit the pseudo-second-order kinetic model well. The Langmuir and Freundlich isotherm parameters for the lead ion adsorption were applied and the Langmuir model agreed better with the adsorption of lead ions onto lyophilized A. niveus.


2013 ◽  
Vol 78 (6) ◽  
pp. 811-826 ◽  
Author(s):  
M.H. Morcali ◽  
B. Zeytuncu ◽  
O. Yucel

Rice hull, a biomass waste product, and Lewatit TP 214, a thiosemicarbazide sorbent, were investigated as adsorbents for the adsorption of platinum (IV) ions from synthetically prepared dilute chloroplatinic acid solutions. The rice hull was characterized by Attenuated Total Reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The effects of the different adsorption parameters, sorbent dosage, contact time, temperature and pH of solution on adsorption percentage were studied in detail on a batch sorption. The adsorption equilibrium data were best fitted with the Langmuir isotherm model. The maximum monolayer adsorption capacities, Qmax, at 25?C were found to be 42.02 and 33.22 mg g-1 for the rice hull and Lewatit TP 214, respectively. Thermodynamic calculations using the measured ?H?, ?S? and ?G? values indicate that the adsorption process was spontaneous and exothermic. The pseudo-first-order and pseudo-second-order rate equations were investigated; the adsorption of platinum ions for both sorbents was found to be described by the pseudo-second-order kinetic model. The kinetic rate, k2, using 30 mg sorbent at 25?C was found to be 0.0289 and 0.0039 g min-1 mg-1 for the rice hull and Lewatit TP 214, respectively. The results indicated that the rice hull can be effectively used for the removal of platinum from aqueous solution.


2020 ◽  
Vol 168 ◽  
pp. 00050
Author(s):  
Vadym Korovin ◽  
Yurii Pohorielov ◽  
Yurii Shestak ◽  
Oleksandr Valiaiev ◽  
Jose Luis Cortina

Kinetics of scandium recovery by TVEX containing tributyl phosphate was studied from the clarified leaching solution of salt chlorinator cake. To assess the contribution of each diffusion phase, experimental data were analyzed using a graphic method. To define the contribution of chemical interaction into the scandium extraction process, recovery kinetics was quantitatively described using pseudo-first order, pseudo-second order kinetic models and Elovich equation in linearized form. It was established that recovery kinetics was most accurately described with the pseudo-second-order model.


2016 ◽  
Vol 74 (7) ◽  
pp. 1644-1657 ◽  
Author(s):  
Mona El-Sayed ◽  
Gh. Eshaq ◽  
A. E. ElMetwally

In our study, Mg–Al–Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg–Al–Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg–Al–Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g−1, and 70.4 mg g−1, respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, qmax, obtained was 113.8 mg g−1, and 79.4 mg g−1 for Co(II), and Ni(II), respectively. Our results showed that Mg–Al–Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.


2012 ◽  
Vol 65 (10) ◽  
pp. 1729-1737 ◽  
Author(s):  
Messaouda Safa ◽  
Mohammed Larouci ◽  
Boumediene Meddah ◽  
Pierre Valemens

The adsorption of Cu2+, Zn2+, Cd2+ and Pb2+ ions from aqueous solution by Algerian raw diatomite was studied. The influences of different sorption parameters such as contact pH solution, contact time and initial metal ions concentration were studied to optimize the reaction conditions. The metals ions adsorption was strictly pH dependent. The maximum adsorption capacities towards Cu2+, Zn2+, Cd2+ and Pb2+ were 0.319, 0.311, 0.18 and 0.096 mmol g−1, respectively. The kinetic data were modelled using the pseudo-first-order and pseudo-second-order kinetic equations. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analysed using the Langmuir and the Freundlich isotherms; the results showed that the adsorption equilibrium was well described by both model isotherms. The negative value of free energy change ΔG indicates feasible and spontaneous adsorption of four metal ions on raw diatomite. According to these results, the high exchange capacities of different metal ions at high and low concentration levels, and given the low cost of the investigated adsorbent in this work, Algerian diatomite was considered to be an excellent adsorbent.


2012 ◽  
Vol 65 (8) ◽  
pp. 1341-1349 ◽  
Author(s):  
Shokooh Sadat Khaloo ◽  
Amir Hossein Matin ◽  
Sahar Sharifi ◽  
Masoumeh Fadaeinia ◽  
Narges Kazempour ◽  
...  

The application of almond shell as a low cost natural adsorbent to remove Hg2+ from aqueous solution was investigated. Batch experiments were carried out to evaluate the adsorption capacity of the material. The chemical and physical parameters such as pH, sorbent amount, initial ion concentration, and contact time were optimized for the maximum uptake of mercury onto the solid surface. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models, and the experimental data were found to fit the Langmuir model rather than the Freundlich. The maximum adsorption capacity obtained from the Langmuir isotherm was 135.13 mg/g. A kinetic study was carried out with pseudo-first-order and pseudo-second-order reaction equations and it was found that the Hg2+ uptake process followed the pseudo-second-order rate expression. The thermodynamic values, ΔG0, ΔH0 and ΔS0, indicated that adsorption was an endothermic and spontaneous process. The potential of this material for mercury elimination was demonstrated by efficient Hg2+ removal from a synthetic effluent.


Sign in / Sign up

Export Citation Format

Share Document