scholarly journals Analysis of formation damage and fracture choking in hydraulically induced fractured reservoirs due to asphaltene deposition

2020 ◽  
Vol 10 (8) ◽  
pp. 3377-3387
Author(s):  
Ilyas Khurshid ◽  
Emad Walid AlShalabi ◽  
Hazim Al-Attar ◽  
Ahmed Khalifa AL-Neaimi

Abstract Hydraulically induced fractures provide a significant fraction of oil supply to the world from unconventional reservoirs due to their high permeability. However, these fractures might choke because of the deposition of organic and in-organic particles. Among organic particles, asphaltene deposition severely reduces reservoir permeability causing an exponential drop in production. In this work, a simulator is developed that predicts the performance of fractured reservoirs by solving the fluid flow governing equations for matrix and fractures. These flow equations were then incorporated with asphaltene deposition equations. Primarily, a numerical model is developed to predict the rate of asphaltene deposition and fracture choking in a radial geometry. It is found that asphaltene deposition could partially or completely choke fractures. Finally, the results are compared with the experimental data and determined various factors affecting fracture choking. From the detailed analysis, it is found that fracture choking is a few percent, but it increases with long production time. The sensitivity analysis was performed to investigate the effect of different influential parameters on permeability alteration of fractured reservoirs by asphaltene deposition. These parameters include fracture-to-matrix permeability ratio, production time, and asphaltene concentration. It is observed that, low fracture-to-matrix permeability ratio has a negligible effect on permeability of a reservoir. The developed model assumes negligible gravity and capillary forces. However, these forces might increase fracture choking in unconventional fractured reservoirs.

2021 ◽  
Vol 15 (58) ◽  
pp. 1-20
Author(s):  
Qingchao Li ◽  
Liang Zhou ◽  
Zhi-Min Li ◽  
Zhen-Hua Liu ◽  
Yong Fang ◽  
...  

Hydraulic fracturing with oriented perforations is an effective technology for reservoir stimulation for gas development in shale reservoirs. However, fracture reorientation during fracturing operation can affect the fracture conductivity and hinder the effective production of shale gas. In the present work, a numerical simulation model for investigating fracture reorientation during fracturing with oriented perforations was established, and it was verified to be suitable for all investigations in this paper. Based on this, factors (such as injection rate and fluid viscosity) affecting both of initiation and reorientation of the hydraulically induced fractures were investigated. The investigation results show that the fluid viscosity has little effect on initiation pressure of hydraulically induced fracture during fracturing operation, and the initiation pressure is mainly affected by perforation azimuth, injection rate and the stress difference. Moreover, the investigation results also show that perforation azimuth and difference between two horizontal principle stresses are the two most important factors affecting fracture reorientation. Based on the investigation results, the optimization of fracturing design can be achieved by adjusting some controllable factors. However, the regret is that the research object herein is a single fracture, and the interaction between fractures during fracturing operation needs to be further explored.


2021 ◽  
Author(s):  
Xiaofei Xiong ◽  
James Jia Sheng

Abstract Sustainable development of shale reservoirs and enhanced oil recovery have become a challenge for the oil industry in recent years. Shale reservoirs are typically characterized by nano Darcy-scale matrix, natural fractures, and artificially fractures with high permeability. Some of earlier studies have confirmed that gas huff-n-puff has been investigated and demonstrated as the most effective and promising solution for improving oil recovery in tight shale reservoirs with ultra-low permeability. Fractures provide an advantage in enhancing recovery from shale reservoirs but they also pose serious problems such as severe gas channeling, which led to rapid decline production from a single well. More studies are needed to optimize the process. This paper studies the method of foam-assisted N2 huff-n-puff to enhance oil recovery in fractured shale cores. The influence of foam on oil recovery was analyzed. The effect of matrix permeability, cycle number and production time on oil recovery are also considered. The shale core used in the experiment was from Sichuan Basin, China. For the purpose of comparation and validation, two groups of tests were conducted. One group of tests was N2 huff-n-puff, and the other was foam-N2 huff-n-puff. In the optimization experiment, matrix permeabilities were set as 0.01mD, 0.008mD and 0.001mD, cycle numbers ranged from one to five, the production time is designed to be 1 hour and 24 hours respectively. During the puff period of experiments, the history of oil recovery was closely monitored to reveal the mechanism. During a round of gas injection of fractured shale cores, foam-assisted N2 huff-n-puff oil recovery is 4.59%, which is significantly higher than that of N2 huff-n-puff is only 0.0126%, and the contrast becomes more obvious with the increase of matrix permeability. The results also showed that the cumulative oil recovery increased as the number of cycles was increased, with the same experimental conditions. There is an optimal production time to achieve maximum oil recovery. The cycle numbers, matrix permeability, and production time played important roles in foam-assisted N2 huff-n-puff injection process. Therefore, under certain conditions, foam-N2 huff-n-puff has a positive effect on oil development in fractured shale.


1965 ◽  
Vol 43 (4) ◽  
pp. 896-912 ◽  
Author(s):  
R. M. Barrer ◽  
D. Nicholson

The steady-state slip flow of the rare gases (He, Ne, Ar, Kr, and Xe) and of propane, CO2, and SO2 has been studied at different temperatures in long, single glass capillaries. The results give values of viscosity which are in agreement with literature values when Ar is used as a calibrating gas. The results can be expressed as a linear plot of the non-dimensional permeability ratio K/K0 against reciprocal Knudsen number; the intercept on the K/K0 axis is a. The value of this intercept depends on both gas and temperature being higher for light gases and high temperatures than for more condensable gases and low temperatures. The parameter a is therefore replaced by ((2 – β)/β)a1 where (1 – β) is the so-called specular reflection coefficient and a1 is a constant. The factors affecting (1 – β) have been discussed. It is suggested that contributions to (1 – β) will arise both from elastically and from inelastically scattered molecules, and the magnitude of these contributions is assessed in terms of the properties of the gas and the surface. The expression finally obtained is compared with experimental values of (1 – β).


SPE Journal ◽  
2018 ◽  
Vol 23 (04) ◽  
pp. 1316-1342 ◽  
Author(s):  
Salam Al-Rbeawi

Summary This paper investigates the impacts of varied stimulated matrix permeability and matrix-block size on pressure behaviors and flow regimes of hydraulically fractured reservoirs using bivariate log-normal distribution. The main objective is assembling the variance in these two parameters to the analytical models of pressure and pressure derivative considering different porous-media petrophysical properties, reservoir configurations, and hydraulic-fracture (HF) characteristics. The motivation is eliminating the long-run discretization treatment in the porous media required by applying analytical models to describe the variance in the previously discussed parameters with the distance between HFs. Several analytical models for pressure response were generated in this study for hydraulically fractured reservoirs with rectangular-shaped drainage areas. These models take into account the change in stimulated matrix permeability from the maximum value close to the HF face to the minimum value at the so-called no-flow boundary between fractures. They also consider the change in the matrix-block size, corresponding to the change in the induced-fracture density (number of fractures per foot of length), from the minimum value close to the fracture face to the maximum value at the no-flow boundary. Bivariate log-normal distribution was used to describe the change in the stimulated matrix permeability and matrix-block size. The formations of interest are composed of stimulated reservoir volume (SRV), where the matrix is stimulated by the fracturing process, and unstimulated reservoir volume (USRV), where the stimulation process does not affect the matrix. The outcomes of this study can be summarized as Generating new analytical models for pressure and pressure derivative in hydraulically fractured reservoirs that consider the change in stimulated matrix-block size and permeability using bivariate log-normal distribution Understanding the effect of using the probability-density function (PDF) of matrix-block size and permeability in the pressure distribution of different reservoirs Observing the new multilinear-flow regime that develops at intermediate production time and represents several simultaneous linear-flow regimes inside HFs, SRV, and USRV Developing analytical models for the new multilinear-flow regime Studying the effects of petrophysical properties of HFs, induced fractures, and matrix as well as reservoir size and configuration on pressure behavior The most interesting points in this study are The applicability of bivariate log-normal distribution for describing the variance and nonuniform distribution of matrix-block size and permeability. The large variance in the matrix-block size and permeability causes significant decrease in wellbore-pressure drop. Small value of standard deviation of matrix-block size and permeability indicates the possibilities for significant decrease in wellbore pressure drop. The means of matrix-block size and permeability may not have significant effects on reservoir-pressure distribution. The new multilinear-flow regime is characterized by a one-eighth slope on the pressure-derivative curve and is seen always after HF linear flow and before boundary-dominated flow regime. Multilinear-flow regime develops to bilinear-flow regime with a one-quarter slope for uniform distribution of equal matrix-block size and permeability.


SPE Journal ◽  
2010 ◽  
Vol 16 (02) ◽  
pp. 411-428 ◽  
Author(s):  
Hamidreza Salimi ◽  
Johannes Bruining

Summary We use upscaling through homogenization to predict oil recovery from fractured reservoirs consisting of matrix columns, also called vertically fractured reservoirs (VFRs), for a variety of conditions. The upscaled VFR model overcomes limitations of the dual-porosity model, including the use of a shape factor. The purpose of this paper is to investigate three main physical aspects of multiphase flow in fractured reservoirs: reservoir wettability, viscosity ratio, and heterogeneity in rock/fluid properties. The main characteristic that determines reservoir behavior is the Péclet number that expresses the ratio of the average imbibition time divided by the residence time of the fluids in the fractures. The second characteristic dimensionless number is the gravity number. Upscaled VFR simulations, aimed at studying the mentioned features, add new insights. First, we discuss the results at low Péclet numbers. For only small gravity numbers, the effect of contact angle, delay time for the nonequilibrium capillary effect, the heterogeneity of the matrix-column size, and the matrix permeability can be ignored without appreciable loss of accuracy. The ultimate oil recovery for mixed-wet VFRs is approximately equal to the Amott index, and the oil production does not depend on the absolute value of the phase viscosity but on viscosity ratio. However, large gravity numbers enhance underriding, aggravated by large contact angles, longer delay times, and higher viscosity ratios. Layering can lead to an improvement or deterioration, depending on the fracture aperture and permeability distribution. At low Péclet numbers, the fractured reservoir behaves very similarly to a conventional reservoir and depends largely on the viscosity ratio and the gravity number. At high Péclet numbers, after water breakthrough, the oil recovery appears to be proportional to the cosine of the contact angle and inversely proportional to the sum of the oil and water viscosity. In addition, the mixed-wetting effect is more pronounced; there are significant influences of delay time (nonequilibrium effects), matrix permeability, matrix-column size, and the column-size distribution on oil recovery. At low gravity numbers and an effective length/thickness ratio larger than 10, the oil recovery is independent of the vertical-fracture-aperture distribution. For the same amount of injected water, the recovery at low Péclet numbers is larger than the recovery at high Péclet numbers.


SPE Journal ◽  
2011 ◽  
Vol 16 (02) ◽  
pp. 358-373 ◽  
Author(s):  
H.. Fadaei ◽  
L.. Castanier ◽  
A.M.. M. Kamp ◽  
G.. Debenest ◽  
M.. Quintard ◽  
...  

Summary Approximately one-third of global heavy-oil resources can be found in fractured reservoirs. In spite of its strategic importance, recovery of heavy crudes from fractured reservoirs has found few applications because of the complexity of such reservoirs. In-situ combustion (ISC) is a candidate process for such reservoirs, especially for those where steam injection is not feasible. Experimental studies reported in the literature on this topic mentioned a cone-shaped combustion front, indicating that the process was governed by diffusion of oxygen into the matrix. The main oil-production mechanisms were found to be thermal expansion of oil and evaporation of light components (Schulte and de Vries 1985; Greaves et al. 1991). In order to confirm these results, we carried out reservoir-simulation studies presented in Fadaei et al. (2010). We have shown that the front has the shape of a cone, and we have performed a combustion/extinction analysis representing the results in a diagram of cumulative production vs. diffusion coefficient and matrix permeability. Before obtaining quantitative and qualitative comparisons, we need to characterize the systems we want to study. Therefore, we also carried out laboratory experiments using kinetic cells and combustion tubes. The kinetic-cell studies showed that the presence of carbonates has a significant effect on combustion kinetics. Our combustion-tube studies confirmed the previously observed coneshaped front. Previous studies reported in literature used heating elements along the combustion tube to regulate the temperature, which may have caused some undue heating of the core. To avoid that, we chose to use efficient insulation to minimize heat losses. Combustion advanced faster in nonconsolidated matrix, in which the permeability was higher than in consolidated matrix. The results showed that the presence of severe heterogeneities may prevent the combustion front from propagating. Several runs were performed for different air-injection rates and pressures and for different permeability contrasts between the matrix and the fracture. The next step of our work is the upscaling of ISC in the fractured reservoir at interwell scale on the basis of knowledge provided by simulation and experimental studies.


Author(s):  
Imran Akbar ◽  
Zhou Hongtao ◽  
Liu Wei ◽  
Asadullah Memon ◽  
Ubedullah Ansari

: The Preformed Particle gels (PPGs) has been widely used and injected in low permeability rich oil zones as di-verting agent to solve the conformance issues, distract displacing fluid into out of sorts swept zones and reduce the perme-ability of thief zones and high permeability fractured zones. However, the PPG propagation and plugging mechanism is still remain unpredictable and sporadic in manifold void space passages. PPGs have two main abilities, first, it increases the sweep efficiency and second, it decreases the water production in mature oilfields. But the success or failure of PPG treatment largely depends on whether it efficiently decreases the permeability of the fluid paths to an expected target or not. In this study, the different factors were studied that affecting the performance of PPG in such reservoirs. PPGs were treated in different ways; treated with brine, low salinity, and high salinity brine and then their impacts were investigated in low/high permeability and fractured reservoirs and void space conduit models as well. From the literature, it was revealed that the sweep efficiency can be improved through PPG but not displacement efficiency and little impact of PPG were found on displacement efficiency. Similarly, on the other hand, Low salinity water flooding (LSWF) can increase the displacement efficiency but not sweep efficiency. Hence, based on above issues, few new techniques and directions were introduced in this work for better treatment of PPG to decrease water cut and increase oil recovery.


Sign in / Sign up

Export Citation Format

Share Document