scholarly journals Factors affecting reorientation of hydraulically induced fracture during fracturing with oriented perforations in shale gas reservoirs

2021 ◽  
Vol 15 (58) ◽  
pp. 1-20
Author(s):  
Qingchao Li ◽  
Liang Zhou ◽  
Zhi-Min Li ◽  
Zhen-Hua Liu ◽  
Yong Fang ◽  
...  

Hydraulic fracturing with oriented perforations is an effective technology for reservoir stimulation for gas development in shale reservoirs. However, fracture reorientation during fracturing operation can affect the fracture conductivity and hinder the effective production of shale gas. In the present work, a numerical simulation model for investigating fracture reorientation during fracturing with oriented perforations was established, and it was verified to be suitable for all investigations in this paper. Based on this, factors (such as injection rate and fluid viscosity) affecting both of initiation and reorientation of the hydraulically induced fractures were investigated. The investigation results show that the fluid viscosity has little effect on initiation pressure of hydraulically induced fracture during fracturing operation, and the initiation pressure is mainly affected by perforation azimuth, injection rate and the stress difference. Moreover, the investigation results also show that perforation azimuth and difference between two horizontal principle stresses are the two most important factors affecting fracture reorientation. Based on the investigation results, the optimization of fracturing design can be achieved by adjusting some controllable factors. However, the regret is that the research object herein is a single fracture, and the interaction between fractures during fracturing operation needs to be further explored.

2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Bin Yuan ◽  
Yongqing Wang ◽  
Zeng Shunpeng

In this study, we analyzed the flow-back resistance of slick water fracturing fluid in shale reservoirs. The flow-back resistance mainly includes capillary force, Van der Waals (VDW) force, hydrogen bond force, and hydration stress. Shale of Lower Silurian Longmaxi Formation (LSLF) was used to study its wettability, hydration stress, and permeability change with time of slick water treatment. The results reveal that wettability of LSLF shale was more oil-wet before immersion, while it becomes more water-wet after immersion. The hydration stress of the shale increased with increasing immersion time. The permeability decreased first, then recovered with increasing immersion time. The major reason for permeability recovery is that the capillary effect (wettability) and the shale hydration make macrocracks extension and expansion and hydration-induced fractures formation.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1335 ◽  
Author(s):  
Jun Xie ◽  
Haoyong Huang ◽  
Yu Sang ◽  
Yu Fan ◽  
Juan Chen ◽  
...  

Recently, the Changning shale gas field has been one of the most outstanding shale plays in China for unconventional gas exploitation. Based on the more practical experience of hydraulic fracturing, the economic gas production from this field can be optimized and gradually improved. However, further optimization of the fracture design requires a deeper understanding of the effects of engineering parameters on simultaneous multiple fracture propagation. It can increase the effective fracture number and the well performance. In this paper, based on the Changning field data, a complex fracture propagation model was established. A series of case studies were investigated to analyze the effects of engineering parameters on simultaneous multiple fracture propagation. The fracture spacing, perforating number, injection rate, fluid viscosity and number of fractures within one stage were considered. The simulation results show that smaller fracture spacing implies stronger stress shadow effects, which significantly reduces the perforating efficiency. The perforating number is a critical parameter that has a big impact on the cluster efficiency. In addition, one cluster with a smaller perforating number can more easily generate a uniform fracture geometry. A higher injection rate is better for promoting uniform fluid volume distribution, with each cluster growing more evenly. An increasing fluid viscosity increases the variation of fluid distribution between perforation clusters, resulting in the increasing gap between the interior fracture and outer fractures. An increasing number of fractures within the stage increases the stress shadow among fractures, resulting in a larger total fracture length and a smaller average fracture width. This work provides key guidelines for improving the effectiveness of hydraulic fracture treatments.


2020 ◽  
Vol 11 (1) ◽  
pp. 219
Author(s):  
Jing Zeng ◽  
Alexey Stovas ◽  
Handong Huang ◽  
Lixia Ren ◽  
Tianlei Tang

Paleozoic marine shale gas resources in Southern China present broad prospects for exploration and development. However, previous research has mostly focused on the shale in the Sichuan Basin. The research target of this study is expanded to the Lower Silurian Longmaxi shale outside the Sichuan Basin. A prediction scheme of shale gas reservoirs through the frequency-dependent seismic attribute technology is developed to reduce drilling risks of shale gas related to complex geological structure and low exploration level. Extracting frequency-dependent seismic attribute is inseparable from spectral decomposition technology, whereby the matching pursuit algorithm is commonly used. However, frequency interference in MP results in an erroneous time-frequency (TF) spectrum and affects the accuracy of seismic attribute. Firstly, a novel spectral decomposition technology is proposed to minimize the effect of frequency interference by integrating the MP and the ensemble empirical mode decomposition (EEMD). Synthetic and real data tests indicate that the proposed spectral decomposition technology provides a TF spectrum with higher accuracy and resolution than traditional MP. Then, a seismic fluid mobility attribute, extracted from the post-stack seismic data through the proposed spectral decomposition technology, is applied to characterize the shale reservoirs. The application result indicates that the seismic fluid mobility attribute can describe the spatial distribution of shale gas reservoirs well without well control. Based on the seismic fluid mobility attribute section, we have learned that the shale gas enrich areas are located near the bottom of the Longmaxi Formation. The inverted velocity data are also introduced to further verify the reliability of seismic fluid mobility. Finally, the thickness map of gas-bearing shale reservoirs in the Longmaxi Formation is obtained by combining the seismic fluid mobility attribute with the inverted velocity data, and two favorable exploration areas are suggested by analyzing the thickness, structure, and burial depth. The present work can not only be used to evaluate shale gas resources in the early stage of exploration, but also help to design the landing point and trajectory of directional drilling in the development stage.


2013 ◽  
Vol 734-737 ◽  
pp. 1200-1203
Author(s):  
Shu Qiang Liu ◽  
Ji Cheng Zhang ◽  
Jin Cheng Xu

During polymer flooding, certain amount of polymer would be lost. Polymer retention causes sweep volume expanding on one side, it also causes polymer loss on the other. Therefore, it is a very important topic to study the influencing factors of polymer retention. There are many factors affecting polymer retention process. This paper mainly studied the influence from dynamic factors such as polymer solution concentration, injection rate, injection time, injected pv number. This paper investigated the influence of these factors on polymer retention process, and optimized these factors to minimize polymer loss in reservoir.


2016 ◽  
Vol 9 (1) ◽  
pp. 207-215 ◽  
Author(s):  
Hongling Zhang ◽  
Jing Wang ◽  
Haiyong Zhang

Shale gas is one of the primary types of unconventional reservoirs to be exploited in search for long-lasting resources. Production from shale gas reservoirs requires horizontal drilling with hydraulic fracturing to achieve the most economic production. However, plenty of parameters (e.g., fracture conductivity, fracture spacing, half-length, matrix permeability, and porosity,etc) have high uncertainty that may cause unexpected high cost. Therefore, to develop an efficient and practical method for quantifying uncertainty and optimizing shale-gas production is highly desirable. This paper focuses on analyzing the main factors during gas production, including petro-physical parameters, hydraulic fracture parameters, and work conditions on shale-gas production performances. Firstly, numerous key parameters of shale-gas production from the fourteen best-known shale gas reservoirs in the United States are selected through the correlation analysis. Secondly, a grey relational grade method is used to quantitatively estimate the potential of developing target shale gas reservoirs as well as the impact ranking of these factors. Analyses on production data of many shale-gas reservoirs indicate that the recovery efficiencies are highly correlated with the major parameters predicted by the new method. Among all main factors, the impact ranking of major factors, from more important to less important, is matrix permeability, fracture conductivity, fracture density of hydraulic fracturing, reservoir pressure, total organic content (TOC), fracture half-length, adsorbed gas, reservoir thickness, reservoir depth, and clay content. This work can provide significant insights into quantifying the evaluation of the development potential of shale gas reservoirs, the influence degree of main factors, and optimization of shale gas production.


2022 ◽  
Author(s):  
Josef R. Shaoul ◽  
Jason Park ◽  
Andrew Boucher ◽  
Inna Tkachuk ◽  
Cornelis Veeken ◽  
...  

Abstract The Saih Rawl gas condensate field has been producing for 20 years from multiple fractured vertical wells covering a very thick gross interval with varying reservoir permeability. After many years of production, the remaining reserves are mainly in the lowest permeability upper units. A pilot program using horizontal multi-frac wells was started in 2015, and five wells were drilled, stimulated and tested over a four-year period. The number of stages per horizontal well ranged from 6 to 14, but in all cases production was much less than expected based on the number of stages and the production from offset vertical wells producing from the same reservoir units with a single fracture. The scope of this paper is to describe the work that was performed to understand the reason for the lower than expected performance of the horizontal wells, how to improve the performance, and the implementation of those ideas in two additional horizontal wells completed in 2020. The study workflow was to perform an integrated analysis of fracturing, production and well test data, in order to history match all available data with a consistent reservoir description (permeability and fracture properties). Fracturing data included diagnostic injections (breakdown, step-rate test and minifrac) and main fracture treatments, where net pressure matching was performed. After closure analysis (ACA) was not possible in most cases due to low reservoir pressure and absence of downhole gauges. Post-fracture well test and production matching was performed using 3D reservoir simulation models including local grid refinement to capture fracture dimensions and conductivity. Based on simulation results, the effective propped fracture half-length seen in the post-frac production was extremely small, on the order of tens of meters, in some of the wells. In other wells, the effective fracture half-length was consistent with the created propped half-length, but the fracture conductivity was extremely small (finite conductivity fracture). The problems with the propped fractures appear to be related to a combination of poor proppant pack cleanup, low proppant concentration and small proppant diameter, compounded by low reservoir pressure which has a negative impact on proppant regained permeability after fracturing with crosslinked gel. Key conclusions from this study are that 1) using the same fracture design in a horizontal well with transverse fractures will not give the same result as in a vertical well in the same reservoir, 2) the effect of depletion on proppant pack cleanup in high temperature tight gas reservoirs appears to be very strong, requiring an adjustment in fracture design and proppant selection to achieve reasonable fracture conductivity, and 3) achieving sufficient effective propped length and height is key to economic production.


2021 ◽  
Author(s):  
Meng Wang ◽  
Mingguang Che ◽  
Bo Zeng ◽  
Yi Song ◽  
Yun Jiang ◽  
...  

Abstract Application of diversion agents in temporarily plugging fracturing of horizontal wells of shale has becoming more and more popular. Nevertheless, the studies on determining the diverter dosage are below adequacy. A novel approach based on laboratory experiments, logging data, rock mechanics tests and fracture simulation was proposed to optimizing the dosage of diversion agents. The optimization model is based on the classic Darcy Law. A pair of 3D-printed rock plates with rugged faces was combined to simulate the coarse hydraulic fractures with the width of 2.0 ~ 7.0 mm. The mixture of the diversion agents and slickwater was dynamically injected to simulate the fracture in Temco fracture conductivity system to mimic the practical treatment to temporarily plugging the fracture. The permeability of the temporary plugging zone in the 3D-printed fractures was measured in order to optimize the dosage of the selected diversion agents. The value of Pnet (also the value of ΔP in Darcy Formula) required for creation of new branched fractures was determined using the Warpinski-Teufel Failure Rules. The hydraulic fractures of target stages were simulated to obtain the widths and heights. The experimental results proved that the selected suite of the diversion agents can temporarily plug the 3D-printed fractures of 2.0 ~ 7.0 mm with blocking pressure up to 15 MPa. The measured permeability of the resulting plugging zones was 0.724 ~ 0.933 D (averaging 0.837 D). The value of Pnet required for creation of branched fractures in shale of WY area (main shale gas payzone of China) was determined as 0.4 ~ 15.6 MPa (averaging 7.9 MPa) which means the natural fractures and/or weak planes with approaching angle less than 70° could be opened to increase the SRV. The typical dosage of the diversion agents used for one stage of the horizontal wells (averaging TVD 3600 m) was calculated as 232 ~ 310 kg. The optimization method was applied to the design job of temporarily plugging fracturing of two shale gas wells. The observed surface pressure rise after injection of diversion agents was 0.6 ~ 11.7 MPa (averaging 4.7 MPa) and the monitored microseismic events of the test stages were 37% more than those of the offset stages.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Yuepeng Wang ◽  
Xiangjun Liu ◽  
Lixi Liang ◽  
Jian Xiong

The complexity of hydraulic fractures (HF) significantly affects the success of reservoir reconstruction. The existence of a bedding plane (BP) in shale impacts the extension of a fracture. For shale reservoirs, in order to investigate the interaction mechanisms of HF and BPs under the action of coupled stress-flow, we simulate the processes of hydraulic fracturing under different conditions, such as the stress difference, permeability coefficients, BP angles, BP spacing, and BP mechanical properties using the rock failure process analysis code (RFPA2D-Flow). Simulation results showed that HF spread outward around the borehole, while the permeability coefficient is uniformly distributed at the model without a BP or stress difference. The HF of the formation without a BP presented a pinnate distribution pattern, and the main direction of the extension is affected by both the ground stress and the permeability coefficient. When there is no stress difference in the model, the fracture extends along the direction of the larger permeability coefficient. In this study, the in situ stress has a greater influence on the extension direction of the main fracture when using the model with stress differences of 6 MPa. As the BP angle increases, the propagation of fractures gradually deviates from the BP direction. The initiation pressure and total breakdown pressure of the models at low permeability coefficients are higher than those under high permeability coefficients. In addition, the initiation pressure and total breakdown pressure of the models are also different. The larger the BP spacing, the higher the compressive strength of the BP, and a larger reduction ratio (the ratio of the strength parameters of the BP to the strength parameters of the matrix) leads to a smaller impact of the BP on fracture initiation and propagation. The elastic modulus has no effect on the failure mode of the model. When HF make contact with the BP, they tend to extend along the BP. Under the same in situ stress condition, the presence of a BP makes the morphology of HF more complex during the process of propagation, which makes it easier to achieve the purpose of stimulated reservoir volume (SRV) fracturing and increased production.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1976 ◽  
Author(s):  
Youqing Chen ◽  
Makoto Naoi ◽  
Yuto Tomonaga ◽  
Takashi Akai ◽  
Hiroyuki Tanaka ◽  
...  

A better understanding of the process of stimulation by hydraulic fracturing in shale gas and oil reservoirs is necessary for improving resource productivity. However, direct observation of hydraulically stimulated regions including induced fractures has been difficult. In the present study, we develop a new approach for directly visualizing regions of shale specimens impregnated by fluid during hydraulic fracturing. The proposed laboratory method uses a thermosetting resin mixed with a fluorescent substance as a fracturing fluid. After fracturing, the resin is fixed within the specimens by heating, and the cut sections are then observed under ultraviolet light. Based on brightness, we can then distinguish induced fractures and their surrounding regions impregnated by the fluid from other regions not reached by the fluid. Polarization microscope observation clearly reveals the detailed structures of tortuous or branched fractures on the micron scale and interactions between fractures and constituent minerals. The proposed experimental and observation method is useful for understanding the process of stimulation by hydraulic fracturing and its relationship with microscopic rock characteristics, which is important for fracturing design optimization in shale gas and oil resource development.


Sign in / Sign up

Export Citation Format

Share Document