World'S First Successful Dual String Installation of a Digital Intelligent Artificial Lift DIAL - Interventionless Gas Lift Production Optimization System, Offshore Malaysia

2021 ◽  
Author(s):  
M Haziq M Ghazali ◽  
M Rizwan Rozlan ◽  
M Farris Bakar ◽  
M Faizatulizuddin Ishak ◽  
Orient Balbir Samuel ◽  
...  

Abstract PETRONAS completed well H-X on B field in Malaysia with a digital intelligent artificial lift (DIAL) gas lift production optimization system. This DIAL installation represents the first ever successful installation of the technology in an Offshore well for Dual String production. This paper provides complete details of the installation planning and operational process undertaken to achieve this milestone. DIAL is a unique technology that enhances the efficiency of gas lift production. Downhole monitoring of production parameters informs remote surface-controlled adjustment of gas lift valves. This enables automation of production optimization removing the need for well intervention. This paper focusses on a well completed in November 2020, the fourth well to be installed with the DIAL technology across PETRONAS Assets. The authors will provide details of the well and the installation phases: system design, pre-job preparations, improvements implementation, run in hole and surface hook-up. For each phase, challenges encountered, and lessons learned will be listed together with observed benefits. DIAL introduces a paradigm shift in design, installation and operation of gas lifted wells. This paper will briefly highlight the justifications of this digital technology in comparison with conventional gas lift techniques. It will consider value added from the design stage, through installation operations, to production optimization. This DIAL system installation confirms the ability to be implement the technology in a challenging dual string completion design to enable deeper injection while avoiding interventions on a well with a greater than 60-degree deviation. With remotely operated, non-pressure dependent multi-valve in-well gas lift units, the technology removes the challenges normally associated with gas-injected production operation in a dual completion well – gas robbing and multi-pointing. Despite the additional operational & planning complications due to COVID-19 restrictions, the well was completed with zero NPT and LTI. Once brought online, this DIAL-assisted production well will be remotely monitored and controlled ensuring continuous production optimization, part of PETRONAS’ upstream digitization strategic vision.

2021 ◽  
Author(s):  
Zaidi Awang@Mohamed ◽  
Jagaan Selladurai ◽  
Siti Nur Mahirah Mohd Zain ◽  
Juhari Yang ◽  
Badroel Rizwan Bahar ◽  
...  

Abstract Objectives/Scope This paper describes a pilot installation of a digital intelligent artificial lift (DIAL) gas lift production optimization system. The work was inspired by PETRONAS' upstream digitalization strategy with five single and dual-string gas lift completions planned from 2018 to 2020, offshore Malaysia. The authors evaluate the impact of the DIAL system in terms of increasing production, optimizing lift-gas injection, reducing well intervention frequency, as well as OPEX and risk reduction. Methods, Procedure, Process DIAL is a unique technology that enhances the efficiency of gas lift production. Downhole monitoring of production parameters informs remote surface-controlled adjustment of gas lift valves. This enables automation of production optimization removing the need for well intervention. The paper focuses on a well installed in June 2020, the first in a five well campaign. The authors will provide details of the technology, and pilot program phases: system design; pre-job preparations; run in hole and surface hook-up; commissioning and unloading; and subsequent production operations. For each phase, challenges encountered, and lessons learned will be listed together with observed benefits. Results, Observations, Conclusions DIAL introduces a paradigm shift in the design, installation, and operation of gas lifted wells. This paper will compare the differences between this digital technology and conventional gas lift techniques. It will consider the value added from the design stage through installation operations to production optimization. The DIAL system's ability to operate at greater than 80-degree deviation enabled deeper injection while avoiding tractor interventions for GLV maintenance in the highly deviated section of the well. Built-in downhole sensors provided real-time pressure monitoring that enabled a better understanding of reservoir behaviour and triggered data-driven reservoir stimulation decisions. The technology also proved very beneficial for production optimization, with the intervention-less adjustment of gas injection rate and depth downhole, based on the observed reservoir response in real time. The variable port sizes can be manipulated by means of surface switch/control. Overcoming the completion challenges due to COVID-19 restrictions, the well was unloaded and brought online with the assistance of personnel located in Houston and Dubai using Silverwell's visualization software. The well continues to be remotely monitored and controlled ensuring continuous production optimization, part of PETRONAS' upstream digitization strategic vision. Novel/Additive Information First deployment worldwide of new and unique gas lift production optimization technology in offshore highly deviated well. The technology deployment was the result of collaborative work between a multi-discipline engineering team in PETRONAS, Silverwell, and Neural Oilfield Service.


2019 ◽  
Author(s):  
Ahmed Alshmakhy ◽  
Khadija Al Daghar ◽  
Sameer Punnapala ◽  
Shamma AlShehhi ◽  
Abdel Ben Amara ◽  
...  

2021 ◽  
Author(s):  
Mohd Hafizi Ariffin ◽  
Muhammad Idraki M Khalil ◽  
Abdullah M Razali ◽  
M Iman Mostaffa

Abstract Most of the oil fields in Sarawak has already producing more than 30 years. When the fields are this old, the team is most certainly facing a lot of problems with aging equipment and facilities. Furthermore, the initial stage of platform installation was not designed to accommodate a large space for an artificial lift system. Most of these fields were designed with gas lift compressors, but because of the space limitation, the platforms can only accommodate a limited gas lift compressor capacity due to space constraints. Furthermore, in recent years, some of the fields just started with their secondary recovery i.e. water, gas injection where the fluid gradient became heavier due to GOR drop or water cut increases. With these limitations and issues, the team needs to be creative in order to prolong the fields’ life with various artificial lift. In order to push the limits, the team begins to improve gas lift distribution among gas lifted wells in the field. This is the cheapest option. Network model recommends the best distribution for each gas lifted wells. Gas lifted wells performance highly dependent on fluid weight, compressor pressure, and reservoir pressure. The change of these parameters will impact the production of these wells. Rigorous and prudent data acquisitions are important to predict performance. Some fields are equipped with pressure downhole gauges, wellhead pressure transmitters, and compressor pressure transmitters. The data collected is continuous and good enough to be used for analysis. Instead of depending on compressor capacity, a high-pressure gas well is a good option for gas lift supply. The issues are to find gas well with enough pressure and sustainability. Usually, this was done by sacrificing several barrels of oil to extract the gas. Electrical Submersible Pump (ESP) is a more expensive option compared to a gas lift method. The reason is most of these fields are not designed to accommodate ESP electricity and space requirements. Some equipment needs to be improved before ESP installation. Because of this, the team were considering new technology such as Thru Tubing Electrical Submersible Pump (TTESP) for a cheaper option. With the study and implementation as per above, the fields able to prolong its production until the end of Production Sharing Contract (PSC). This proactive approach has maintained the fields’ production with The paper seeks to present on the challenges, root cause analysis and the lessons learned from the subsequent improvement activities. The lessons learned will be applicable to oil fields with similar situations to further improve the fields’ production.


Author(s):  
Rahman Ashena ◽  
Mahmood Bataee ◽  
Hamed Jafarpour ◽  
Hamid Abbasi ◽  
Anatoly Zolotukhin ◽  
...  

AbstractProductivity of wells in South-West Iran has decreased due to completion and production problems in recent decades. This is a large risk against sustainable production from the fields. To allow stable production, an important measure is completion and production optimization including artificial lift methods. This was investigated using simulations validated by pilot field tests. Several case studies were considered in terms of their completion and production. Five scenarios were investigated: natural production through annulus and tubing (scenario-1 and 2), artificial gas lift production through annulus (scenario-3), through tubing using non-standard gas lift (scenario-4) and using standard gas lift (scenario-5). Scenario-1 is currently the case in most wells of the field. To find the optimal scenario and completion/production parameters, simulations of 11 wells of an oilfield in the region were carried out using nodal and sensitivity analysis. The optimized parameters include wellhead pressures (WHPs), tubing dimensions, maximum tolerable water cuts and gas oil ratios and artificial gas injection rate. Simulation results were validated by pilot field tests. In addition, appropriately selected wellhead and Christmas trees for all scenarios were depicted. Simulations confirmed by field pilot tests showed that optimization of completion and production mode and parameters can contribute largely to production improvement. The results showed that the current scenario-1 is the worst of all. However, production through tubing (scenario-2) is optimal for wells which can produce with natural reservoir pressure, with an increase of 800 STB/Day rate per well compared with scenario-1. However, for wells requiring artificial gas lift, the average production rate increase (per well) from the annulus to tubing production was 1185 STB/Day. Next, using the standard gas lift (scenario-5) was found to be the optimal mode of gas lifting and is strongly recommended. WHPs in scenario-5 were the greatest of all, whereas scenario-1 gave the lowest WHPs. The optimal tubing diameter and length were determined. The greatest maximum tolerable water cut was obtained using scenario-5, whereas the lowest was with scenario-1. The maximum tolerable GOR was around 1900 scf/STB. Changing of scenarios did not have significant effect on maximum tolerable GOR. The optimal artificial gas injection rates were found. This validated simulation work proved that completion and production optimization of mode and parameters had considerable contribution to production improvement in South-West Iran. This sequential comprehensive work can be applied in any other field or region.


Author(s):  
Son Tung Pham ◽  
Dinh Hau Tran

AbstractArtificial lift methods such as ESP and GL are commonly used in oil wells around the world, especially in offshore wells. However, these two methods are normally used separately, and this paper therefore aimed to study the possible combination of ESP and GL by analyzing its effects on energy saving using equivalent depth method and on production rate as well as on ESP life cycle using nodal analysis. The paper also performed the production optimization for a network of wells using each well a combination of GL and ESP. The optimization process consists of selecting the appropriate operation frequency for the ESP system and the injection gas lift distributed to each well with the aim of maximizing the total production of the network. In addition, this optimization process was conducted in two cases: unlimited and limited volume of injection gas lift. In case the GL flow is limited, the BST (Binary Search Tree) algorithm was used to determine the suitable gas rates injected into each well to maximize the total network production. The optimization workflow proposed in this study was applied to the field X in Cuu Long basin of Vietnam and was calibrated from the real data of this field. The results demonstrated the advantage of the combination of ESP and GL in energy saving and in application for small diameter wells. In addition, the workflow and source code will allow engineers to replicate the results and to apply this method for future studies in order to determine optimum operating parameters of this hybrid artificial lift to achieve the highest production rate from a network of multiple wells.


2021 ◽  
Author(s):  
Ahmed Alshmakhy ◽  
Yann Bigno ◽  
Talha Saqib ◽  
Moazim Soomro ◽  
Juan Faustinelli ◽  
...  

Abstract Abu Dhabi National Oil Company (ADNOC) is expanding the use of DIAL (Digital Intelligent Artificial Lift) technology, across its assets, through a range of different oil production applications. These include gas lifted single and dual completions, Extended Reach Drilling (ERD) wells and In-Situ gas lift. DIAL is a first-of-kind technology that enhances the efficiency of gas lift through downhole data, surface control and digital operations. This data driven approach enables production automation and minimizes well intervention requirements. This paper will present four different applications for the technology. These applications were selected by ADNOC assets, as they were deemed to bring the most value for DIAL implementation. The paper will describe technical details for each application, including gas lift designs, completion specificities, installation procedures and benefits observed or anticipated. A summary of the value add for each of the four applications are listed below. Gas lifted single completion is the most common application for the DIAL system. The benefits of the application have been described in previous papers and range from intervention savings to production optimization. This paper will highlight the additional benefit of automation, making full use of the system digital features. Gas lifted dual string completion, where the technology enables efficient lift of both strings, improving well production in the range of 40 to 100%. API (American Petroleum Institute) does not recommend pressure operated gas lift in dual wells. DIAL offers stability, simultaneous lifting of both strings through surface control and downhole data. ERD gas lifted well required flexibility for its gas lift operations. DIAL enables real time changes of injection depths based on reservoir response, and units can be installed deeper into the deviated section of the well without any deviation limits. In-Situ gas lift is a specific application where a gas zone is used to lift production from the oil zone in the same well. DIAL enables measurement of the gas injection rate at the point of injection, and adjustment of the flow area to optimize production. This is a world's first use of the technology for this type of application. A range of applications are described in this paper with many technical details, recommendations and lessons learnt to enable replication within the industry. Some of these applications are world first.


2018 ◽  
Vol 7 (2) ◽  
pp. 46-54
Author(s):  
Fitrianti Fitrianti ◽  
Dike Fitriansyah Putra ◽  
Desma Cendra

The declining reservoir, oil production and pressure depletion with the well being produced, the results of the investment of the well will also decrease. For that there needs to be energy that can help to lift the fluid to the surface. One of the artificial lift methods that can be used is a gas lift. Gas lift is a method commonly used when there is a natural gas source as an injection gas supply. The selection of the artificial lift method is based on several considerations, namely the reservoir conditions, fluid conditions, well conditions, conditions on the surface, availability of electricity, availability of gas, and sand problem. The influential parameters in the selection of gas lifts include: Productivity Index (PI), Gas Liquid Ratio (GLR), depth of the well and driving mechanism from the reservoir. The Gas Lift that the production optimization wants to do is the injection system in a Continuous Gas Lift. Used in wells that have a high Productifity Index value. Where in the LB field to be analyzed, the Productifity Index value is 2.0 bpd / psi. This study intends to optimize a gaslift well performance as an effort to maximize the results of well production. Based on the research that has been done using Prosper Modeling on the “J” field, the following conclusions are obtained the effect of pressure and viscosity on the gas lift well flow rate in this condition can be said to be efficient, because the conditions / pressure given at temperatures below 300 F can reach the miscible condition and from the results of determining the optimal conditions to get the best well performance, obtain an optimal liquid rate of 1829.4 STB / D with an oil rate of 36.6 STB / D.   Keywords: Gas lift, Optimization, Immiscible Pressure, Viscosity


2020 ◽  
Author(s):  
Ahmed Alshmakhy ◽  
Sameer Punnapala ◽  
Shamma AlShehhi ◽  
Abdel Ben Amara ◽  
Graham Makin ◽  
...  

2021 ◽  
Author(s):  
Mohammed Ahmed Al-Janabi ◽  
Omar F. Al-Fatlawi ◽  
Dhifaf J. Sadiq ◽  
Haider Abdulmuhsin Mahmood ◽  
Mustafa Alaulddin Al-Juboori

Abstract Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorithm to tackle the challenging task of optimally allocating the gas lift injection rate through numerical modeling and simulation studies to maximize the oil production of a Middle Eastern oil field with 20 production wells with limited amount of gas to be injected. The key objective of this study is to assess the performance of the wells of the field after applying gas lift as an artificial lift method and applying the genetic algorithm as an optimization algorithm while comparing the results of the network to the case of artificially lifted wells by utilizing ESP pumps to the network and to have a more accurate view on the practicability of applying the gas lift optimization technique. The comparison is based on different measures and sensitivity studies, reservoir pressure, and water cut sensitivity analysis are applied to allow the assessment of the performance of the wells in the network throughout the life of the field. To have a full and insight view an economic study and comparison was applied in this study to estimate the benefits of applying the gas lift method and the GA optimization technique while comparing the results to the case of the ESP pumps and the case of naturally flowing wells. The gas lift technique proved to have the ability to enhance the production of the oil field and the optimization process showed quite an enhancement in the task of maximizing the oil production rate while using the same amount of gas to be injected in the each well, the sensitivity analysis showed that the gas lift method is comparable to the other artificial lift method and it have an upper hand in handling the reservoir pressure reduction, and economically CAPEX of the gas lift were calculated to be able to assess the time to reach a profitable income by comparing the results of OPEX of gas lift the technique showed a profitable income higher than the cases of naturally flowing wells and the ESP pumps lifted wells. Additionally, the paper illustrated the genetic algorithm (GA) optimization model in a way that allowed it to be followed as a guide for the task of optimizing the gas injection rate for a network with a large number of wells and limited amount of gas to be injected.


Sign in / Sign up

Export Citation Format

Share Document