Digital Intelligent Artificial Lift DIAL Gas Lift Production Optimization Deployments Across Assets

2021 ◽  
Author(s):  
Ahmed Alshmakhy ◽  
Yann Bigno ◽  
Talha Saqib ◽  
Moazim Soomro ◽  
Juan Faustinelli ◽  
...  

Abstract Abu Dhabi National Oil Company (ADNOC) is expanding the use of DIAL (Digital Intelligent Artificial Lift) technology, across its assets, through a range of different oil production applications. These include gas lifted single and dual completions, Extended Reach Drilling (ERD) wells and In-Situ gas lift. DIAL is a first-of-kind technology that enhances the efficiency of gas lift through downhole data, surface control and digital operations. This data driven approach enables production automation and minimizes well intervention requirements. This paper will present four different applications for the technology. These applications were selected by ADNOC assets, as they were deemed to bring the most value for DIAL implementation. The paper will describe technical details for each application, including gas lift designs, completion specificities, installation procedures and benefits observed or anticipated. A summary of the value add for each of the four applications are listed below. Gas lifted single completion is the most common application for the DIAL system. The benefits of the application have been described in previous papers and range from intervention savings to production optimization. This paper will highlight the additional benefit of automation, making full use of the system digital features. Gas lifted dual string completion, where the technology enables efficient lift of both strings, improving well production in the range of 40 to 100%. API (American Petroleum Institute) does not recommend pressure operated gas lift in dual wells. DIAL offers stability, simultaneous lifting of both strings through surface control and downhole data. ERD gas lifted well required flexibility for its gas lift operations. DIAL enables real time changes of injection depths based on reservoir response, and units can be installed deeper into the deviated section of the well without any deviation limits. In-Situ gas lift is a specific application where a gas zone is used to lift production from the oil zone in the same well. DIAL enables measurement of the gas injection rate at the point of injection, and adjustment of the flow area to optimize production. This is a world's first use of the technology for this type of application. A range of applications are described in this paper with many technical details, recommendations and lessons learnt to enable replication within the industry. Some of these applications are world first.

2020 ◽  
Vol 4 (1) ◽  
pp. 15-18
Author(s):  
Oghenegare E. Eyankware ◽  
Idaereesoari Harriet Ateke ◽  
Okonta Nnamdi Joseph

Well DEF, a well located in Niger Delta region of Nigeria was shut down for 7 years. On gearing towards re-starting production, different options such as installation of gas lift mechanism, servicing and installation of packers and valves were evaluated for possibility of increasing well fluid productivity. Hence, this research was focused on optimizing well fluid productivity using PROSPER through installation of continuous gas lift mechanism on an existing well using incomplete dataset; in addition, the work evaluated effect of gas injection rates, wellhead pressure, water cut and gas gravity on efficiency of the artificial lift mechanism for improved well fluid production. Results of the study showed that optimum gas injection rate of 0.6122 MMscf/day produced well fluid production of 264.28 STB/day which is lower than pristine production rate (266 STB/day) of the well. Also, increment in wellhead pressure resulted in decrease in well production, increase in water cut facilitated reduction in well fluid productivity while gas gravity is inversely proportional to well fluid productivity. Based on results obtained, authors concluded that Well DEF does not require gaslift mechanism hence, valves and parkers need to be re-serviced and re-installed for sustained well fluid.


2019 ◽  
Author(s):  
Ahmed Alshmakhy ◽  
Khadija Al Daghar ◽  
Sameer Punnapala ◽  
Shamma AlShehhi ◽  
Abdel Ben Amara ◽  
...  

2021 ◽  
Author(s):  
Mohammed Ahmed Al-Janabi ◽  
Omar F. Al-Fatlawi ◽  
Dhifaf J. Sadiq ◽  
Haider Abdulmuhsin Mahmood ◽  
Mustafa Alaulddin Al-Juboori

Abstract Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorithm to tackle the challenging task of optimally allocating the gas lift injection rate through numerical modeling and simulation studies to maximize the oil production of a Middle Eastern oil field with 20 production wells with limited amount of gas to be injected. The key objective of this study is to assess the performance of the wells of the field after applying gas lift as an artificial lift method and applying the genetic algorithm as an optimization algorithm while comparing the results of the network to the case of artificially lifted wells by utilizing ESP pumps to the network and to have a more accurate view on the practicability of applying the gas lift optimization technique. The comparison is based on different measures and sensitivity studies, reservoir pressure, and water cut sensitivity analysis are applied to allow the assessment of the performance of the wells in the network throughout the life of the field. To have a full and insight view an economic study and comparison was applied in this study to estimate the benefits of applying the gas lift method and the GA optimization technique while comparing the results to the case of the ESP pumps and the case of naturally flowing wells. The gas lift technique proved to have the ability to enhance the production of the oil field and the optimization process showed quite an enhancement in the task of maximizing the oil production rate while using the same amount of gas to be injected in the each well, the sensitivity analysis showed that the gas lift method is comparable to the other artificial lift method and it have an upper hand in handling the reservoir pressure reduction, and economically CAPEX of the gas lift were calculated to be able to assess the time to reach a profitable income by comparing the results of OPEX of gas lift the technique showed a profitable income higher than the cases of naturally flowing wells and the ESP pumps lifted wells. Additionally, the paper illustrated the genetic algorithm (GA) optimization model in a way that allowed it to be followed as a guide for the task of optimizing the gas injection rate for a network with a large number of wells and limited amount of gas to be injected.


SPE Journal ◽  
2020 ◽  
pp. 1-21
Author(s):  
Gabriela Chaves ◽  
Danielle Monteiro ◽  
Maria Clara Duque ◽  
Virgílio Ferreira Filho ◽  
Juliana Baioco ◽  
...  

Summary Short-term production optimization is an essential activity in the oil/gasfield-development process because it allows for the maximization of field production by finding the optimal operational point. In the fields that use gas lift as an artificial-lift method, the gas-lift optimization is a short-term problem. This paper presents a stochastic approach to include uncertainties from production parameters in gas-lift optimization, called the uncertain-gas-lift-optimization problem (UGLOP). Uncertainties from production variables are originated from the measurement process and the intrinsic stochastic phenomena of the production activity. The production variables usually obtained from production tests play an important role in the optimization process because they are used to update reservoir and well models. To include the uncertainties, the strategy involves representing the well-test data using nonlinear regression [support-vector regression (SVR)] and using the Latin-hypercube-sampling (LHS) method. The optimization gives a stochastic solution for the operational point. In the solved problem, this operational point is composed of the individual wells’ gas-lift-injection rate, choke opening, and well/separator routing. The value of the stochastic solution is computed to evaluate the benefit of solving the stochastic problem over the deterministic. The developed methodology is applied to wells of a Brazilian field considering uncertainty in water-cut (WC) values. As a result, an up-to-4.5% gain in oil production is observed using this approach.


2021 ◽  
Vol 73 (05) ◽  
pp. 21-27
Author(s):  
Stephen Rassenfoss

Gas lift is one of the most popular ways to increase oil-well production, and it is no secret that it is an underperformer. Back in 2014, ExxonMobil reported that by creating a team of roving gas-lift experts it was able to add an average of 22% more output on several hundred wells where the gas injection had been optimized. Gains were expected because “wells do not remain the same over time; they change,” said Rodney Bane, global artificial-lift manager at ExxonMobil, in this JPT story covering the 2014 SPE Artificial Lift Conference and Exhibition (https://jpt.spe.org/paying-close-attention-gas-lift-system-can-be-rewarding). The problem with gas injection is that change is hard. Injection adjustment or repairs require either pulling the tubing to reach the injection mandrels or a wireline run. Those with good- producing wells, particularly offshore, need to weigh the possible gain against the cost and lost production during the job. Those managing more and more wells live with iffy data, injection systems prone to malfunction, horizontal wells prone to irregular flows, and a time-consuming process for calculating the proper injection rates. New approaches addressing those negatives have led a few big operators to try new systems designed to allow constant adjustments based on downhole data with electric control systems designed to be more reliable. Programmable digital controls raise an obvious question: How do you take advantage of that capability? Constantly updated injection data based on traditional evaluation methods is the first step. And new capabilities are inspiring new thinking about how injected gas lifts production and how to make it work more efficiently. Optimizing the process has not been a priority in gas lift. “It was a fairly imprecise thing. But the beauty of gas lift is it works even where it’s broken. It’s not a pump; it’s flow assurance,” said Brent Vangolen, surface and base management technology manager with Occidental. Occidental is among the early adopters of new gas-lift methods along with companies including Chevron, Shell, ExxonMobil, Petronas, and ADNOC. Vangolen expects the industry will follow. “Gas lift is going through the same transformation as rod pumps went through in the 60s and 70s,” he said. Back then, rod pump engineers began tracking changes in the load on the rod through each pump stroke by using dynamometer cards. That data was used to better program pump controls. “You went from egg timers on pumping units to full-blown optimization pumpoff controllers, variable speed drives … this huge infant technology that changed the rod pump space,” he said. Papers at last year’s SPE artificial lift conference covered the continuing digitization in rod lift and that gas lift was finally moving in that direction.


Author(s):  
Rahman Ashena ◽  
Mahmood Bataee ◽  
Hamed Jafarpour ◽  
Hamid Abbasi ◽  
Anatoly Zolotukhin ◽  
...  

AbstractProductivity of wells in South-West Iran has decreased due to completion and production problems in recent decades. This is a large risk against sustainable production from the fields. To allow stable production, an important measure is completion and production optimization including artificial lift methods. This was investigated using simulations validated by pilot field tests. Several case studies were considered in terms of their completion and production. Five scenarios were investigated: natural production through annulus and tubing (scenario-1 and 2), artificial gas lift production through annulus (scenario-3), through tubing using non-standard gas lift (scenario-4) and using standard gas lift (scenario-5). Scenario-1 is currently the case in most wells of the field. To find the optimal scenario and completion/production parameters, simulations of 11 wells of an oilfield in the region were carried out using nodal and sensitivity analysis. The optimized parameters include wellhead pressures (WHPs), tubing dimensions, maximum tolerable water cuts and gas oil ratios and artificial gas injection rate. Simulation results were validated by pilot field tests. In addition, appropriately selected wellhead and Christmas trees for all scenarios were depicted. Simulations confirmed by field pilot tests showed that optimization of completion and production mode and parameters can contribute largely to production improvement. The results showed that the current scenario-1 is the worst of all. However, production through tubing (scenario-2) is optimal for wells which can produce with natural reservoir pressure, with an increase of 800 STB/Day rate per well compared with scenario-1. However, for wells requiring artificial gas lift, the average production rate increase (per well) from the annulus to tubing production was 1185 STB/Day. Next, using the standard gas lift (scenario-5) was found to be the optimal mode of gas lifting and is strongly recommended. WHPs in scenario-5 were the greatest of all, whereas scenario-1 gave the lowest WHPs. The optimal tubing diameter and length were determined. The greatest maximum tolerable water cut was obtained using scenario-5, whereas the lowest was with scenario-1. The maximum tolerable GOR was around 1900 scf/STB. Changing of scenarios did not have significant effect on maximum tolerable GOR. The optimal artificial gas injection rates were found. This validated simulation work proved that completion and production optimization of mode and parameters had considerable contribution to production improvement in South-West Iran. This sequential comprehensive work can be applied in any other field or region.


Author(s):  
Son Tung Pham ◽  
Dinh Hau Tran

AbstractArtificial lift methods such as ESP and GL are commonly used in oil wells around the world, especially in offshore wells. However, these two methods are normally used separately, and this paper therefore aimed to study the possible combination of ESP and GL by analyzing its effects on energy saving using equivalent depth method and on production rate as well as on ESP life cycle using nodal analysis. The paper also performed the production optimization for a network of wells using each well a combination of GL and ESP. The optimization process consists of selecting the appropriate operation frequency for the ESP system and the injection gas lift distributed to each well with the aim of maximizing the total production of the network. In addition, this optimization process was conducted in two cases: unlimited and limited volume of injection gas lift. In case the GL flow is limited, the BST (Binary Search Tree) algorithm was used to determine the suitable gas rates injected into each well to maximize the total network production. The optimization workflow proposed in this study was applied to the field X in Cuu Long basin of Vietnam and was calibrated from the real data of this field. The results demonstrated the advantage of the combination of ESP and GL in energy saving and in application for small diameter wells. In addition, the workflow and source code will allow engineers to replicate the results and to apply this method for future studies in order to determine optimum operating parameters of this hybrid artificial lift to achieve the highest production rate from a network of multiple wells.


2020 ◽  
Vol 1 (2) ◽  
pp. 61
Author(s):  
Ikenna Tobechukwu Okorocha ◽  
Chuka Emmanuel Chinwuko ◽  
Chika Edith Mgbemena ◽  
Chinedum Ogonna Mgbemena

Gas Lift operation involves the injection of compressed gas into a low producing or non-performing well to maximize oil production. The oil produced from a gas lift well is a function of the gas injection rate. The optimal gas injection rate is achieved by optimization. However, the gas lift, which is an artificial lift process, has some drawbacks such as the deterioration of the oil well, incorrect production metering, instability of the gas compressor, and over injection of gas. This paper discusses the various optimization techniques for the gas lift in the Oil and Gas production process. A systematic literature search was conducted on four databases, namely Google Scholar, Scopus, IEE Explore and DOAJ, to identify papers that focused on Gas lift optimizations. The materials for this review were collected primarily via database searches. The major challenges associated with gas lift were identified, and the different optimization strategies available in the literature reviewed. The strategies reviewed were found to be based on artificial intelligence (AI) and machine learning (ML). The implementation of any of the optimization strategies for the gas lift will enhance profitability, reduce operational cost, and extend the life of the wells.


2007 ◽  
Vol 6 (1) ◽  
pp. 96 ◽  
Author(s):  
S. N. Bordalo ◽  
C. O. Carvalho Filho

The Intermittent Gas Lift (IGL) is an artificial lift method for petroleum production suitable for producing wells from depleted or low productivity reservoirs. In order to enhance the well production, many variants of the conventional IGL have been developed and used worldwide. One of these variants, the Inverted IGL (IGL-I), consists of removing the gas lift valve and reversing the flow paths inside the well: gas is injected through the tubing whereas liquid is lifted through the casing annulus. The oil production is believed to increase with the IGL-I due to the larger annulus storage capacity, at the expense of higher injected gas volumes. Despite of its potential for practical applications, the IGL-I has not been covered by the literature. Aiming to surmount such  gap in the literature, this paper presents a model for the dynamical behavior of the IGL-I wells. The complexity emerged from the IGL-I cyclic operation is assessed through a simultaneous and coupled simulation scheme, comprising a variable set of non-linear algebraic equations and non-linear time-differential equations for the flow of oil and gas throughout the injection, transfer, elevation, production, decompression and loading stages of each cycle. The simulator provides the engineer with a valuable tool to investigate the well behavior of several IGL cycles. Based on the observed results, the designer may propose practical recommendations regarding the IGL-I design and operation.


2021 ◽  
Author(s):  
M Haziq M Ghazali ◽  
M Rizwan Rozlan ◽  
M Farris Bakar ◽  
M Faizatulizuddin Ishak ◽  
Orient Balbir Samuel ◽  
...  

Abstract PETRONAS completed well H-X on B field in Malaysia with a digital intelligent artificial lift (DIAL) gas lift production optimization system. This DIAL installation represents the first ever successful installation of the technology in an Offshore well for Dual String production. This paper provides complete details of the installation planning and operational process undertaken to achieve this milestone. DIAL is a unique technology that enhances the efficiency of gas lift production. Downhole monitoring of production parameters informs remote surface-controlled adjustment of gas lift valves. This enables automation of production optimization removing the need for well intervention. This paper focusses on a well completed in November 2020, the fourth well to be installed with the DIAL technology across PETRONAS Assets. The authors will provide details of the well and the installation phases: system design, pre-job preparations, improvements implementation, run in hole and surface hook-up. For each phase, challenges encountered, and lessons learned will be listed together with observed benefits. DIAL introduces a paradigm shift in design, installation and operation of gas lifted wells. This paper will briefly highlight the justifications of this digital technology in comparison with conventional gas lift techniques. It will consider value added from the design stage, through installation operations, to production optimization. This DIAL system installation confirms the ability to be implement the technology in a challenging dual string completion design to enable deeper injection while avoiding interventions on a well with a greater than 60-degree deviation. With remotely operated, non-pressure dependent multi-valve in-well gas lift units, the technology removes the challenges normally associated with gas-injected production operation in a dual completion well – gas robbing and multi-pointing. Despite the additional operational & planning complications due to COVID-19 restrictions, the well was completed with zero NPT and LTI. Once brought online, this DIAL-assisted production well will be remotely monitored and controlled ensuring continuous production optimization, part of PETRONAS’ upstream digitization strategic vision.


Sign in / Sign up

Export Citation Format

Share Document