scholarly journals Determination of the mud weight window, optimum drilling trajectory, and wellbore stability using geomechanical parameters in one of the Iranian hydrocarbon reservoirs

Author(s):  
Masoud Hoseinpour ◽  
Mohammad Ali Riahi

AbstractThe challenges behind this research were encountered while drilling into the Ilam, Mauddud, Gurpi, and Mishrif Formations, where severe drilling instability-related issues were observed across the weaker formations above the reservoir intervals. In this paper, geomechanical parameters were carried out to determine optimum mud weight windows and safe drilling deviation trajectories using the geomechanical parameters. We propose a workflow to determine the equivalent mud window (EMW) that resulted in 11.18–12.61 ppg which is suitable for Gurpi formation and 9.36–13.13 ppg for Ilam and Mishrif Formations, respectively. To estimate safe drilling trajectories, the Poisson’s ratio, Young’s modulus, and unconfined compressive strength (UCS) parameters were determined. These parameters illustrate an optimum drilling trajectory angle of 45° (Azimuth 277°) for the Ilam to Mauddud Formations and less than 35° for the Gurpi Formation. Our analysis reveals that maximum horizontal stress and Poisson’s ratio have the most impact on determining the optimum drilling mud weight windows and safe drilling deviation trajectories. On the contrary, vertical stress and Young’s modulus have minimum impact on drilling mud weight windows and safe drilling deviation trajectories. This study can be used as a reference for the optimal mud weight window to overcome drilling instability issues in future wellbore planning in the study.

2020 ◽  
Vol 8 (4) ◽  
pp. T1023-T1036
Author(s):  
Cristina Mariana Ruse ◽  
Mehdi Mokhtari

To avoid steep declines in the Tuscaloosa Marine Shale (TMS) production, wells are fracture-stimulated to release the hydrocarbons trapped in the matrix of the formation. An accurate estimation of Young’s modulus and Poisson’s ratio is essential for hydraulic fracture propagation. In addition, ignoring the highly heterogeneous and anisotropic character of TMS can lead to erroneous stress values, which subsequently affect hydraulic fracture width estimates and the overall hydraulic fracturing process. We have developed an empirical 1D geomechanical model that takes into account VTI anisotropy, and it is used to characterize the elastic mechanical properties of TMS in two wells. In the analyzed formation, the vertical Poisson’s ratio is less than the horizontal Poisson’s ratio, which suggests the necessity of an alternative to the ANNIE equations. The stiffness coefficients [Formula: see text] and [Formula: see text] were estimated using the relationships developed from the ultrasonic core data available for the two TMS. Further, correlations between the static and dynamic properties from laboratory tests were used to improve the minimum horizontal stress calculation. We compare VTI Young’s moduli, Poisson’s ratios, and minimum horizontal stress with the isotropic solution. VTI modeling improves the estimation of the elastic mechanical properties. The isotropic solution underestimates the minimum horizontal stress in the formation. Moreover, it was shown that the 20 ft shale interval below the TMS base is characterized by a low Young’s modulus (the vertical Young’s modulus is equal to 20 GPa, whereas the horizontal Young’s modulus is equal to 40 GPa) and may be a frac barrier.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ahmed Zarzor Al-Yaseri

Knowing the mechanical properties (Young’s modulus (E)( , Poisson’s Ratio (ν), Shear Modulus (G), Bulk modulus (K) and compressibility which is the inverse of Bulk modulus) of the rocks involve in a reservoir, are critical factors for reservoir characterization). Those properties affect a wide variety of applications into the petroleum industry; from drilling well planning and execution to production performance (sand production, compaction, subsidence, etc) passing through a wide variety of topics like wellbore stability, well completions and of course reservoir characterization. For these reasons, the knowledge of these properties is really valuable for people working in the petroleum industry and of course working in reservoir characterization. This study was located in Berea town, Oklahoma, and it was intended to identify the geomechanical and acoustic properties of a sandstone sample. The Berea sandstone elastic properties are characterized using two methods: Quasi static and Dynamic. A detailed explanation of the sample preparation and the testing procedure is provided. Calculation results for both methods showed consistent values for the Young’s modulus being around 3,000,000 psi. The Poisson’s Ratio value is between 0.13 and 0.3. This study was performed in the PoroMechanics Institute (PMI) in the Sarkeys Energy Center at the University of Oklahoma, USA. Monitoring equipment was used to obtain all the information necessary for the proper characterization of the rock. The results of this work are a good tool that can be used in future simulations such as hydraulic fracturing treatment, reservoir fluid flow or reserve estimation.


2006 ◽  
Vol 914 ◽  
Author(s):  
Jiping Ye ◽  
Satoshi Shimizu ◽  
Shigeo Sato ◽  
Nobuo Kojima ◽  
Junnji Noro

AbstractA recently developed bidirectional thermal expansion measurement (BTEM) method was applied to different types of low-k films to substantiate the reliability of the Poisson's ratio found with this technique and thereby to corroborate its practical utility. In this work, the Poisson's ratio was determined by obtaining the temperature gradient of the biaxial thermal stress from substrate curvature measurements, the temperature gradient of the whole thermal expansion strain along the film thickness from x-ray reflectivity (XRR) measurements, and reduced modulus of the film from nanoindentation measurements. For silicon oxide-based SiOC film having a thickness of 382.5 nm, the Poisson's ratio, Young's modulus and thermal extension coefficient (TEC) were determined to be Vf = 0.26, αf =21 ppm/K and Ef =9,7 GPa. These data are close to the levels of metals and polymers rather than the levels of fused silicon oxide, which is characterized by Vf = 0.17 and Er = 69.6 GPa. The alkyl component in the silicon oxide-based framework is thought to act as an agent in reducing the modulus and elevating the Poisson's ratio in SiOC low-k materials. In the case of an organic polymer SiLK film with a thickness of 501.5 nm, the Poisson's ratio, Young's modulus and TEC were determined to be Vf = 0.39, αf =74 ppm/K and Er =3.1 GPa, which are in the typical range of V= 0.34~0.47 with E =1.0~10 GPa for polymer materials. From the viewpoint of the relationship between the Poisson's ratio and Young's modulus as classified by different material types, the Poisson's ratios found for the silicon oxide-based SiOC and organic SiLK films are reasonable values, thereby confirming that BTEM is a reliable and effective method for evaluating the Poisson's ratio of thin films.


2008 ◽  
Vol 33-37 ◽  
pp. 969-974 ◽  
Author(s):  
Bong Bu Jung ◽  
Seong Hyun Ko ◽  
Hun Kee Lee ◽  
Hyun Chul Park

This paper will discuss two different techniques to measure mechanical properties of thin film, bulge test and nano-indentation test. In the bulge test, uniform pressure applies to one side of thin film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties such as the elastic modulus and the residual stress. Nano-indentation measurements are accomplished by pushing the indenter tip into a sample and then withdrawing it, recording the force required as a function of position. . In this study, modified King’s model can be used to estimate the mechanical properties of the thin film in order to avoid the effect of substrates. Both techniques can be used to determine Young’s modulus or Poisson’s ratio, but in both cases knowledge of the other variables is needed. However, the mathematical relationship between the modulus and Poisson's ratio is different for the two experimental techniques. Hence, achieving agreement between the techniques means that the modulus and Poisson’s ratio and Young’s modulus of thin films can be determined with no a priori knowledge of either.


Author(s):  
Fang Li ◽  
Liuxi Cai ◽  
Shun-sen Wang ◽  
Zhenping Feng

Abstract Finite element method (FEM) was used to study the stress peak of stress S11 (Radial stress component in X-axis) on the steam turbine blade surface of four typical erosion-resistant coatings (Fe2B, CrN, Cr3C2-NiCr and Al2O3-13%TiO2). The effect of four parameters, such as impact velocity, coating thickness, Young's modulus and Poisson's ratio on the stress peak of stress S11 were analyzed. Results show that: the position of tensile stress peak and compressive stress peak of stress S11 are far away from the impact center point with the increase of impact velocity. When coating thickness is equal to or greater than 10μm, the magnitude of tensile stress peak of stress S11 on the four coating surfaces does not change with the coating thickness at different impact velocities. When coating thickness is equal to or greater than 2μm, the magnitude of tensile stress peak of stress S11 of four coatings show a trend of increasing first and then decreasing with the increase of Young's modulus. Meanwhile, the larger the Poisson's ratio, the smaller the tensile stress peak of stress S11. After optimization, When coating thickness is 2μm, Poisson's ratio is 0.35 and Young's modulus is 800 GPa, the Fe2B coating has the strongest erosion resistance under the same impact conditions, followed by Cr3C2-NiCr, CrN, and the Al2O3- 13%TiO2 coating, Al2O3-13%TiO2 coating has the worst erosion resistance.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0011
Author(s):  
Daniel Sturnick ◽  
Guilherme Saito ◽  
Jonathan Deland ◽  
Constantine Demetracopoulos ◽  
Xiang Chen ◽  
...  

Category: Ankle Arthritis Introduction/Purpose: Loosening of the tibial component is the primary failure mode in total ankle arthroplasty (TAA). The mechanics of the tibial component loosening has not been fully elucidated. Clinically observed radiolucency and cyst formation in the periprosthetic bone may be associated with unfavorable load sharing at and adjacent to the tibial bone-implant interface contributory to implant loosening. However, no study has fully investigated the load transfer from the tibial component to the bone under multiaxial loads in the ankle. The objective of this study was to utilize subject-specific finite element (FE) models to investigate the load transfer through tibial bone-implant interface, as well as periprosthetic bone strains under simulated multiaxial loads. Methods: Bone-implant FE models were developed from CT datasets of three cadaveric specimens that underwent TAA using a modern fixed-bearing tibial implant (a cobalt-chrome tray with a polyethylene bearing, Salto Talaris, Integra LifeSciences). Implant placement was estimated from the post-operative CT scans. Bone was modeled as isotropic elastic material with inhomogeneous Young’s modulus (determined from CT Hounsfield units) and a uniform Poisson’s ratio of 0.3. The tibial tray (Young’s modulus: 200,000 MPa, Poisson’s ratio: 0.3) and the polyethylene bearing (Young’s modulus: 600 MPa, Poisson’s ratio: 0.4) were modeled as isotropic elastic. A 100-N compressive force, a 300-N anterior force, and a 3-Nm moment were applied to two literature based loading regions on the surface of the polyethylene bearing. The proximal tibia was fixed in all directions. The bone-implant contact was modeled as frictional with a coefficient of 0.7, whereas the polyethylene bearing was bonded to the tray. Results: Along the long axis of the tibia, load was transferred to the bone primarily through the flat bone-contacting base of the tibial tray and the cylindrical top of the keel, little amount of load was transferred to the bone between those two features (Fig. 1A). Low strain was observed in bone regions medial and lateral to the keel of the tibial tray, where bone cysts were often observed clinically (Fig. 1A). On average, approximated 70% of load was transferred through the anterior aspect of the tibial tray at the flat bone-contacting base, which corresponded to the relatively high bone strain adjacent to the implant edge in the anterior bone-implant interface (Fig. 1B). Conclusion: Our results demonstrated a two-step load transfer pattern along the long axis of the tibia, revealing regions with low bone strain peripheral to the keel indicative to stress shielding. Those regions were consistent with the locations of bone cysts observed clinically, which may be explained by the stress shielding associated remodeling of bone. These findings could also describe the mechanism of implant loosening and failure. Future studies may use our model to simulate more loading scenarios, as well as different implant placement and design, to identify means to optimize load transfer to the bone and prevent stress shielding.


1996 ◽  
Vol 3 (3) ◽  
pp. 145-185
Author(s):  
Robert J.M. Craik

A statistical energy analysis model of a building was used to assess the effect of design changes on sound transmission. Systematic changes were made to the material properties (density, Young's modulus, Poisson's ratio and internal loss factor) and to the dimensions (thickness and room size). These changes resulted in a redistribution of the energy throughout the building causing the noise level to go up in some rooms and to go down in others. For each case examined it was found that the effect of several changes could be estimated from the sum of the individual changes. Thus a change of 20% in the density resulted in approximately double the change in DnTw that was obtained from a 10% change in density. The same additive effect was also found to apply if more than one variable was changed at the same time. Thus the change in DnTw resulting from a small change in Young's modulus for the floors and a small change in the density of the walls can be estimated from the sum of the two individual effects. Changes to the thickness and density of the walls and floors have the greatest effect on sound transmission whilst changes to Young's modulus and Poisson's ratio have a much smaller effect. Damping can also have a significant effect on transmission particularly far from the source.


Sign in / Sign up

Export Citation Format

Share Document