scholarly journals Correction to: Rheological characterization of potassium carbonate deep eutectic solvent (DES) based drilling mud

Author(s):  
Muhammad Hammad Rasool ◽  
Asif Zamir ◽  
Khaled A. Elraies ◽  
Maqsood Ahmad ◽  
Muhammad Ayoub ◽  
...  
Author(s):  
Muhammad Hammad Rasool ◽  
Asif Zamir ◽  
Khaled A. Elraies ◽  
Maqsood Ahmad ◽  
Muhammad Ayoub ◽  
...  

AbstractDifferent additives are added in the drilling mud to increase its efficiency in terms of its rheology and filtration properties. Recently, the application of ionic liquids (ILs) has been exploited by various investigators as a drilling additive for improving the mud rheology. The more recent studies have shown that imidazolium-based ionic liquids (the most used class of ionic liquids in drilling fluids) are toxic. Moreover, the advancement in green chemistry has put a big question mark on the greener nature of ionic liquids because they are non-biodegradable and generally very expensive. Deep eutectic solvents (DES) are the non-toxic and cheaper alternative of ionic liquids possessing the same qualities as of ILs. In our previous work, we used potassium carbonate and glycerol-based DES as a drilling fluid additive. We found that DES has successfully improved the mud rheology and filtration properties of the mud. In this current study, various characterizations have been conducted to understand the underlying mechanism behind DES as a rheology modifier. The characterization shows the improvement in rheology is due to the intercalation of DES between alumino-silicate layers and interaction of DES with clay which alters edge to face orientation of sodium bentonite and ultimately its dispersion behaviour. The addition of DES decreases average grain size and disperses the clay particles in mud slurry which reduce the overall permeability and porosity of the filter cake thus improving the filtration behaviour of the mud. Moreover, the behaviour of DES based mud is modelled at 25 °C and 100 °C which shows DES-based mud follows Herschel–Buckley model and exhibits shear thinning behaviour even at elevated temperature.


SPE Journal ◽  
2000 ◽  
Vol 5 (04) ◽  
pp. 377-386 ◽  
Author(s):  
Roberto Maglione ◽  
Giovanni Robotti ◽  
Raffaele Romagnoli

TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 641-649
Author(s):  
JOSHUA OMAMBALA ◽  
CARL MCINTYRE

The vast majority of tissue production uses creping to achieve the required set of properties on the base sheet. The Yankee coating helps to develop the desired crepe that in turn determines properties such as bulk and softness. The adhesion of the sheet to the Yankee surface is a very important characteristic to consider in achieving the desired crepe. The coating mix usually consists of the adhesive, modifier, and release. A good combination of these components is essential to achieving the desired properties of the tissue or towel, which often are determined by trials on the machine that can be time consuming and lead to costly rejects. In this paper, five compositions of an industrial Yankee coating adhesive, modifier, and release were examined rheologically. The weight ratio of the adhesive was kept constant at 30% in all five compositions and the modifier and release ratios were varied. The normal force and work done by the different compositions have been shown at various temperatures simulating that of the Yankee surface, and the oscillatory test was carried out to explain the linear and nonlinear viscoelastic characteristic of the optimal coating composition.


Author(s):  
Luiz Eduardo Rodrigues Vieira ◽  
Leonardo Rosa Ribeiro da Silva ◽  
Felipe Chagas Rodrigues de Souza ◽  
Wisley Sales ◽  
Álisson Rocha Machado

Author(s):  
Joel López Bonilla ◽  
Cesar Celis ◽  
Danmer Maza

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 948
Author(s):  
Nicola Zerbinati ◽  
Sabrina Sommatis ◽  
Cristina Maccario ◽  
Maria Chiara Capillo ◽  
Giulia Grimaldi ◽  
...  

(1) Background: Injectable hyaluronic acid (HA) dermal fillers are used to restore volume, hydration and skin tone in aesthetic medicine. HA fillers differ from each other due to their cross-linking technologies, with the aim to increase mechanical and biological activities. One of the most recent and promising cross-linkers is polyethylene glycol diglycidyl ether (PEGDE), used by the company Matex Lab S.p.A., (Brindisi, Italy) to create the HA dermal filler PEGDE family. Over the last few years, several studies have been performed to investigate the biocompatibility and biodegradability of these formulations, but little information is available regarding their matrix structure, rheological and physicochemical properties related to their cross-linking technologies, the HA content or the degree of cross-linking. (2) Methods: Seven different injectable HA hydrogels were subjected to optical microscopic examination, cohesivity evaluation and rheological characterization in order to investigate their behavior. (3) Results: The analyzed cross-linked dermal fillers showed a fibrous “spiderweb-like” matrix structure, with each medical device presenting different and peculiar rheological features. Except for HA non cross-linked hydrogel 18 mg/mL, all showed an elastic and cohesive profile. (4) Conclusions: The comparative analysis with other literature works makes a preliminary characterization of these injectable medical devices possible.


Fluids ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 178
Author(s):  
Souhail Maazioui ◽  
Abderrahim Maazouz ◽  
Fayssal Benkhaldoun ◽  
Driss Ouazar ◽  
Khalid Lamnawar

Phosphate ore slurry is a suspension of insoluble particles of phosphate rock, the primary raw material for fertilizer and phosphoric acid, in a continuous phase of water. This suspension has a non-Newtonian flow behavior and exhibits yield stress as the shear rate tends toward zero. The suspended particles in the present study were assumed to be noncolloidal. Various grades and phosphate ore concentrations were chosen for this rheological investigation. We created some experimental protocols to determine the main characteristics of these complex fluids and established relevant rheological models with a view to simulate the numerical flow in a cylindrical pipeline. Rheograms of these slurries were obtained using a rotational rheometer and were accurately modeled with commonly used yield-pseudoplastic models. The results show that the concentration of solids in a solid–liquid mixture could be increased while maintaining a desired apparent viscosity. Finally, the design equations for the laminar pipe flow of yield pseudoplastics were investigated to highlight the role of rheological studies in this context.


Sign in / Sign up

Export Citation Format

Share Document