scholarly journals Bacterial diversity in the gastrointestinal tracts of Rhinolophus luctus and Murina leucogaster in Henan Province, China

2019 ◽  
Vol 69 (13) ◽  
pp. 1407-1414 ◽  
Author(s):  
Yan Sun ◽  
Zhimin Yuan ◽  
Yuming Guo ◽  
Yuanzhao Qin ◽  
Yongtian Ban ◽  
...  

Abstract Purpose Previous studies have assessed the diversity of gastrointestinal bacteria in bats and reported that some of the strains are pathogenic to humans; therefore, bats are considered to be potential reservoirs of zoonotic pathogens. However, the bacterial diversity and types of pathogenic bacteria in the gastrointestinal tracts of Rhinolophus luctus and Murina leucogaster have not yet been determined. Humans frequently come into contact with these species; therefore, assessments of their gut microbiota, especially potential pathogens, are essential for public health. In the present study, MiSeq high-throughput sequencing was used to address this research gap, and the results were compared with those reported previously. Methods The V3–V4 regions of the 16S rRNA gene were sequenced using the MiSeq high-throughput sequencing platform to determine the bacterial community of the stomach and the intestines of R. luctus and M. leucogaster. Results The bacteria in the gastrointestinal tracts of R. luctus and M. leucogaster were classified into three and four main bacterial phyla, respectively. In both R. luctus and M. leucogaster, the dominant phylum was Proteobacteria (stomach 86.07% and 95.79%, intestines 91.87% and 88.78%, respectively), followed by Firmicutes (stomach 13.84% and 4.19%, intestines 8.11% and 11.20%, respectively). In total, 18 and 20 bacterial genera occurred in a relative abundance of 0.01% or more in the gastrointestinal tracts of R. luctus and M. leucogaster, respectively. In R. luctus, the dominant genera were Lactococcus (10.11%) and Paeniclostridium (3.41%) in the stomach, and Undibacterium (28.56%) and Paeniclostridium (4.69%) in the intestines. In M. leucogaster, the dominant genera were Undibacterium (54.41%) and Burkholderia (5.28%) in the stomach, and Undibacterium (29.67%) and Enterococcus (7.19%) in the intestines. Among the detected gastrointestinal tract flora of R. luctus and M. leucogaster, 12 bacterial genera were pathogenic or opportunistic pathogens. Conclusion A high number of human pathogens were detected in the gastrointestinal tracts of R. luctus and M. leucogaster, which demonstrates the urgency for increased efforts in the prevention and management of bat-to-human disease transmission from these species.

2014 ◽  
Vol 80 (7) ◽  
pp. 2071-2083 ◽  
Author(s):  
Vani Mohit ◽  
Philippe Archambault ◽  
Nicolas Toupoint ◽  
Connie Lovejoy

ABSTRACTMost of what is known about coastal free-living and attached bacterial diversity is based on open coasts, with high particulate and nutrient riverine supply, terrestrial runoffs, and anthropogenic activities. The Magdalen Islands in the Gulf of St. Lawrence (Canada) are dominated by shallow lagoons with small, relatively pristine catchments and no freshwater input apart from rain. Such conditions provided an opportunity to investigate coastal free-living and attached marine bacterial diversity in the absence of confounding effects of steep freshwater gradients. We found significant differences between the two communities and marked temporal patterns in both. Taxonomic richness and diversity were greater in the attached than in the free-living community, increasing over summer, especially within the least abundant bacterial phyla. The highest number of reads fell within the SAR 11 clade (Pelagibacter,Alphaproteobacteria), which dominated free-living communities. The attached communities had deeper phylum-level diversity than the free-living fraction. Distance-based redundancy analysis indicated that the particulate organic matter (POM) concentration was the main variable separating early and late summer samples with salinity and temperature changes also significantly correlated to bacterial community structure. Our approach using high-throughput sequencing detected differences in free-living versus attached bacteria in the absence of riverine input, in keeping with the concept that marine attached communities are distinct from cooccurring free-living taxa. This diversity likely reflects the diverse microhabitats of available particles, implying that the total bacterial diversity in coastal systems is linked to particle supply and variability, with implications for understanding microbial biodiversity in marine systems.


2017 ◽  
Vol 68 ◽  
pp. 129-136 ◽  
Author(s):  
Karina Edith Motato ◽  
Christian Milani ◽  
Marco Ventura ◽  
Francia Elena Valencia ◽  
Patricia Ruas-Madiedo ◽  
...  

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Kilaza Samson Mwaikono ◽  
Solomon Maina ◽  
Aswathy Sebastian ◽  
Megan Schilling ◽  
Vivek Kapur ◽  
...  

2021 ◽  
Vol 4 (4) ◽  
pp. 304-312
Author(s):  
E. Gözde Özbayram ◽  
brahim Halil Miraloğlu ◽  
Bahar İnce

This paper aims to contribute to the understanding of bacterial community patterns of the lakes of İğneada Floodplain Forest by metabarcoding approach. Within this scope, surface water samples were collected from three lakes located in the area namely Mert Lake, Hamam Lake, and Saka Lake, and the bacterial diversity was assessed by a high throughput sequencing of the 16S rRNA gene. Chao1 richness and Shannon diversity were higher in Saka Lake indicated a more diverse bacterial community. Proteobacteria was by far the most abundant phyla in all lakes. Although Bacteroidetes and Actinobacteria also dominated the community, their abundances differed in each lake. While the family Burkholderiaceae represented 25% of the bacterial community in Saka Lake, the abundances were 9% and 4% in Hamam Lake and Mert Lake, respectively. This study is one of the first investigations specifically focused on the bacterial communities in three lakes of İğneada Floodplain by next-generation sequencing platform and gave a prescreening of the bacterial diversity. Further studies are required to determine the biotechnological potential of this unique habitat.


2020 ◽  
Author(s):  
Yuanyuan He ◽  
Yating Luo ◽  
Qinwan Huang ◽  
Hongyun Zhou ◽  
Ming Qian ◽  
...  

Abstract Background: To investigate the effects of Xiaoning liquid on gut microbiota in mouse during asthma.Methods: A total of 60 mice were randomly and averagely assigned to healthy control group, control group, budesonide group, and Xiaoning liquid group. The later three groups were used to establish an Ovalbumin (OVA) asthma model. The intestinal bacterial communities were compared among groups using 16S rRNA gene amplification. Analyzing the structure of gut microbiota with OTU analysis, Shannon–Wiener, PCA, PCOA, etc. 16s rDNA high- throughput sequencing. Results: The abundance and diversity of the gut microbiota in asthmatic mice increased, most obviously in the control group. The Bacteroidetes and Firmicutes levels increased in all asthmatic mice. The level of Bacteroides increased most obviously, making Bacteroides a useful marker of gut microbiota changes in asthmatic mice. The levels of Proteobacterium, Deferribacteraceae and Mucispirillum dropped significantly in the Xiaoning liquid group. Conclusions: Xiaoning liquid can reduce the species and numbers of pathogenic bacteria and restored the intestinal microecology of asthmatic mice. Xiaoning liquid has a positive effect on the function of gut microbiota.


Author(s):  
Meiyan Luo ◽  
Leilei Chen ◽  
Huanming Liu ◽  
Jiahui Jiang ◽  
Chongxi Lai ◽  
...  

Abstract The structure of the microbial community during sand crab juice fermentation was analyzed using culture-based methods and high-throughput 16S rRNA gene sequencing. Additionally, the changes in amino acid nitrogen (AAN) and total volatile basic nitrogen (TVB-N) were evaluated. Staphylococcus equorum, Staphylococcus arlettae, Staphylococcus saprophyticus, Salinicoccus amylolyticus, and Bacillus cereus were isolated by traditional culture isolation technique. The Good's coverage obtained by high-throughput sequencing was over 99.5%, and the Chao1 and Simpson indices showed small fluctuations, indicating that the species abundance and diversity did not change significantly during the fermentation process, although the abundance decreased. Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant bacterial phyla observed during fermentation, whereas Aquabacterium, Roseovarius, Muribaculaceae, and Silicimonas were the dominant bacterial genera. The AAN content increased from 0.15 to 0.43 g/100 mL during the 15-day fermentation, indicating the production of small peptides and amino acids during fermentation. The TVB-N content (25.2 mg/100 mL) on day 15 indicated slight spoilage of sand crab juice, although the freshness conformed to the production standard. These results provide a theoretical basis for improving the quality and optimizing the production process of sand crab juice.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 809
Author(s):  
Sen Wang ◽  
Wanyu Liu ◽  
Jun Li ◽  
Haotian Sun ◽  
Yali Qian ◽  
...  

Microorganisms existing in airborne fine particulate matter (PM2.5) have key implications in biogeochemical cycling and human health. In this study, PM2.5 samples, collected in the typical basin cities of Xi’an and Linfen, China, were analyzed through high-throughput sequencing to understand microbial seasonal variation characteristics and ecological functions. For bacteria, the highest richness and diversity were identified in autumn. The bacterial phyla were dominated by Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Metabolism was the most abundant pathway, with the highest relative abundance found in autumn. Pathogenic bacteria (Pseudomonas, Acinetobacter, Serratia, and Delftia) were positively correlated with most disease-related pathways. Besides, C cycling dominated in spring and summer, while N cycling dominated in autumn and winter. The relative abundance of S cycling was highest during winter in Linfen. For fungi, the highest richness was found in summer. Basidiomycota and Ascomycota mainly constituted the fungal phyla. Moreover, temperature (T) and sulfur dioxide (SO2) in Xi’an, and T, SO2, and nitrogen dioxide (NO2) in Linfen were the key factors affecting microbial community structures, which were associated with different pollution characteristics in Xi’an and Linfen. Overall, these results provide an important reference for the research into airborne microbial seasonal variations, along with their ecological functions and health impacts.


2021 ◽  
Vol 17 ◽  
pp. 117693432199635
Author(s):  
Daoxin Liu ◽  
Pengfei Song ◽  
Jingyan Yan ◽  
Haijing Wang ◽  
Zhenyuan Cai ◽  
...  

Wild-caught animals must cope with drastic lifestyle and dietary changes after being induced to captivity. How the gut microbiome structure of these animals will change in response receives increasing attention. The plateau zokor ( Eospalax baileyi), a typic subterranean rodent endemic to the Qinghai-Tibet plateau, spends almost the whole life underground and is well adapted to the environmental pressures of both plateau and underground. However, how the gut microbiome of the plateau zokor will change in response to captivity has not been reported to date. This study compared the microbial community structure and functions of 22 plateau zokors before (the WS group) and after being kept in captivity for 15 days (the LS group, fed on carrots) using the 16S rRNA gene via high-throughput sequencing technology. The results showed that the LS group retained 973 of the 977 operational taxonomic units (OTUs) in the WS group, and no new OTUs were found in the LS group. The dominant bacterial phyla were Bacteroides and Firmicutes in both groups. In alpha diversity analysis, the Shannon, Sobs, and ACE indexes of the LS group were significantly lower than those of the WS group. A remarkable difference ( P < 0.01) between groups was also detected in beta diversity analysis. The UPGMA clustering, NMDS, PCoA, and Anosim results all showed that the intergroup difference was significantly greater than the intragroup difference. And compared with the WS group, the intragroup difference of the gut microbiota in the LS group was much larger, which failed to support the assumption that similar diets should drive convergence of gut microbial communities. PICRUSt revealed that although some functional categories displayed significant differences between groups, the relative abundances of these categories were very close in both groups. Based on all the results, we conclude that as plateau zokors enter captivity for a short time, although the relative abundances of different gut microbiota categories shifted significantly, they can maintain almost all the OTUs and the functions of the gut microbiota in the wild. So, the use of wild-caught plateau zokors in gut microbial studies is acceptable if the time in captivity is short.


2013 ◽  
Vol 5 (1) ◽  
pp. 21-25 ◽  
Author(s):  
Yue-Jian Hu ◽  
Qian Wang ◽  
Yun-Tao Jiang ◽  
Rui Ma ◽  
Wen-Wei Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document