scholarly journals Soil organic carbon storage in a mountain permafrost area of Central Asia (High Altai, Russia)

AMBIO ◽  
2020 ◽  
Author(s):  
Didac Pascual ◽  
Peter Kuhry ◽  
Tatiana Raudina

AbstractThe thawing and subsequent decomposition of large stocks of soil organic carbon (SOC) currently stored in the northern circumpolar permafrost region are projected to result in a ‘positive’ feedback on global warming. The magnitude of this feedback can only be assessed with improved knowledge about the total size and geographic distribution of the permafrost SOC pool. This study investigates SOC storage in an under-sampled mountain permafrost area in the Russian High Altai. SOC stocks from 39 soil pits are upscaled using a GIS-based land cover classification. We found that the top 100 cm of soils in Aktru Valley and the adjacent Kuray Basin only holds on average 2.6 ± 0.6 kg C m−2 (95% confidence interval), of which only c. 1% is stored in permafrost. Global warming will result in an upward shift of alpine life zones, with new plant cover and soil development at higher elevations. As a result, this type of mountain permafrost area might act as a net C sink in the future, representing a ‘negative’ feedback on global warming.

2021 ◽  
Vol 7 (9) ◽  
pp. eaaz5236 ◽  
Author(s):  
Umakant Mishra ◽  
Gustaf Hugelius ◽  
Eitan Shelef ◽  
Yuanhe Yang ◽  
Jens Strauss ◽  
...  

Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that 1014−175+194 Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate.


2021 ◽  
Author(s):  
Chih-Hsin Cheng ◽  
Pei-Chen Lee ◽  
Xiao-Yi Fang

<p>The cropland afforestation policy was initiated in 2002 in Taiwan and had been approaching the 20-year term. From the scientific perspective, it is a critical issue to understand the public welfare role and ecosystem services provided by the cropland afforestation. In this study, we investigated the changes of soil organic carbon (SOC) on plantations after 14 years conversion from the sugarcane fields. Soil samples were collected at 0-10 and 10-20 cm depth. Soil organic C concentration, bulk density, soil aggregation, and the stable isotopic <sup>13</sup>C of the SOC and aggregates were determined. The results indicated the SOC stocks on the afforested plots were between 1000 and 1500 g m<sup>-2 </sup>significantly higher than those under the sugarcane plots (p < 0.05). The analyses of stable <sup>13</sup>C indicated that the net increases in SOC stocks on the afforested plots were mainly attributed to the inputs of the forest-derived SOC that outweighed the loss of sugarcane-derived SOC. The afforestation also enhanced the aggregation with higher stability and SOC concentration. The comparatively depleted <sup>13</sup>C values in the stable macroaggregates further suggested the ecological function from this new SOC source. Combining with the stand development and aboveground biomass accumulation, we expected the cropland afforestation would provide ecosystem services and functions.</p>


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 517
Author(s):  
Sunwei Wei ◽  
Zhengyong Zhao ◽  
Qi Yang ◽  
Xiaogang Ding

Soil organic carbon storage (SOCS) estimation is a crucial branch of the atmospheric–vegetation–soil carbon cycle study under the background of global climate change. SOCS research has increased worldwide. The objective of this study is to develop a two-stage approach with good extension capability to estimate SOCS. In the first stage, an artificial neural network (ANN) model is adopted to estimate SOCS based on 255 soil samples with five soil layers (20 cm increments to 100 cm) in Luoding, Guangdong Province, China. This method is compared with three common methods: The soil type method (STM), ordinary kriging (OK), and radial basis function (RBF) interpolation. In the second stage, a linear model is introduced to capture the regional differences and further improve the estimation accuracy of the Luoding-based ANN model when extending it to Xinxing, Guangdong Province. This is done after assessing the generalizability of the above four methods with 120 soil samples from Xinxing. The results for the first stage show that the ANN model has much better estimation accuracy than STM, OK, and RBF, with the average root mean square error (RMSE) of the five soil layers decreasing by 0.62–0.90 kg·m−2, R2 increasing from 0.54 to 0.65, and the mean absolute error decreasing from 0.32 to 0.42. Moreover, the spatial distribution maps produced by the ANN model are more accurate than those of other methods for describing the overall and local SOCS in detail. The results of the second stage indicate that STM, OK, and RBF have poor generalizability (R2 < 0.1), and the R2 value obtained with ANN method is also 43–56% lower for the five soil layers compared with the estimation accuracy achieved in Luoding. However, the R2 of the linear models built with the 20% soil samples from Xinxing are 0.23–0.29 higher for the five soil layers. Thus, the ANN model is an effective method for accurately estimating SOCS on a regional scale with a small number of field samples. The linear model could easily extend the ANN model to outside areas where the ANN model was originally developed with a better level of accuracy.


Geoderma ◽  
2006 ◽  
Vol 134 (1-2) ◽  
pp. 200-206 ◽  
Author(s):  
Huajun Tang ◽  
Jianjun Qiu ◽  
Eric Van Ranst ◽  
Changsheng Li

2003 ◽  
Vol 83 (4) ◽  
pp. 363-380 ◽  
Author(s):  
A. J. VandenBygaart ◽  
E. G. Gregorich ◽  
D. A. Angers

To fulfill commitments under the Kyoto Protocol, Canada is required to provide verifiable estimates and uncertainties for soil organic carbon (SOC) stocks, and for changes in those stocks over time. Estimates and uncertainties for agricultural soils can be derived from long-term studies that have measured differences in SOC between different management practices. We compiled published data from long-term studies in Canada to assess the effect of agricultural management on SOC. A total of 62 studies were compiled, in which the difference in SOC was determined for conversion from native land to cropland, and for different tillage, crop rotation and fertilizer management practices. There was a loss of 24 ± 6% of the SOC after native land was converted to agricultural land. No-till (NT) increased the storage of SOC in western Canada by 2.9 ± 1.3 Mg ha-1; however, in eastern Canada conversion to NT did not increase SOC. In general, the potential to store SOC when NT was adopted decreased with increasing background levels of SOC. Using no-tillage, reducing summer fallow, including hay in rotation with wheat (Triticum aestivum L.), plowing green manures into the soil, and applying N and organic fertilizers were the practices that tended to show the most consistent in creases in SOC storage. By relating treatment SOC levels to those in the control treatments, SOC stock change factors and their levels of uncertainty were derived for use in empirical models, such as the United Nations Intergovernmental Panel on Climate Change (IPCC). Guidelines model for C stock changes. However, we must be careful when attempting to extrapolate research plot data to farmers’ fields since the history of soil and crop management has a significant influence on existing and future SOC stocks. Key words: C sequestration, tillage, crop rotations, fertilizer, cropping intensity, Canada


Geoderma ◽  
2010 ◽  
Vol 154 (3-4) ◽  
pp. 261-266 ◽  
Author(s):  
Fengpeng Han ◽  
Wei Hu ◽  
Jiyong Zheng ◽  
Feng Du ◽  
Xingchang Zhang

2014 ◽  
Vol 7 (3) ◽  
pp. 1197-1210 ◽  
Author(s):  
M. Nussbaum ◽  
A. Papritz ◽  
A. Baltensweiler ◽  
L. Walthert

Abstract. Accurate estimates of soil organic carbon (SOC) stocks are required to quantify carbon sources and sinks caused by land use change at national scale. This study presents a novel robust kriging method to precisely estimate regional and national mean SOC stocks, along with truthful standard errors. We used this new approach to estimate mean forest SOC stock for Switzerland and for its five main ecoregions. Using data of 1033 forest soil profiles, we modelled stocks of two compartments (0–30, 0–100 cm depth) of mineral soils. Log-normal regression models that accounted for correlation between SOC stocks and environmental covariates and residual (spatial) auto-correlation were fitted by a newly developed robust restricted maximum likelihood method, which is insensitive to outliers in the data. Precipitation, near-infrared reflectance, topographic and aggregated information of a soil and a geotechnical map were retained in the models. Both models showed weak but significant residual autocorrelation. The predictive power of the fitted models, evaluated by comparing predictions with independent data of 175 soil profiles, was moderate (robust R2 = 0.34 for SOC stock in 0–30 cm and R2 = 0.40 in 0–100 cm). Prediction standard errors (SE), validated by comparing point prediction intervals with data, proved to be conservative. Using the fitted models, we mapped forest SOC stock by robust external-drift point kriging at high resolution across Switzerland. Predicted mean stocks in 0–30 and 0–100 cm depth were equal to 7.99 kg m−2 (SE 0.15 kg m−2) and 12.58 kg m−2 (SE 0.24 kg m−2), respectively. Hence, topsoils store about 64% of SOC stocks down to 100 cm depth. Previous studies underestimated SOC stocks of topsoil slightly and those of subsoils strongly. The comparison further revealed that our estimates have substantially smaller SE than previous estimates.


Soil Research ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 1 ◽  
Author(s):  
Christopher Poeplau ◽  
Lisa Reiter ◽  
Antonio Berti ◽  
Thomas Kätterer

Crop residue incorporation (RI) is recommended to increase soil organic carbon (SOC) stocks. However, the positive effect on SOC is often reported to be relatively low and alternative use of crop residues, e.g. as a bioenergy source, may be more climate smart. In this context, it is important to understand: (i) the response of SOC stocks to long-term crop residue incorporation; and (ii) the qualitative SOC change, in order to judge the sustainability of this measure. We investigated the effect of 40 years of RI combined with five different nitrogen (N) fertilisation levels on SOC stocks and five SOC fractions differing in turnover times on a clay loam soil in Padua, Italy. The average increase in SOC stock in the 0–30cm soil layer was 3.1Mgha–1 or 6.8%, with no difference between N fertilisation rates. Retention coefficients of residues did not exceed 4% and decreased significantly with increasing N rate (R2=0.49). The effect of RI was higher after 20 years (4.6Mgha–1) than after 40 years, indicating that a new equilibrium has been reached and no further gains in SOC can be expected. Most (92%) of the total SOC was stored in the silt and clay fraction and 93% of the accumulated carbon was also found in this fraction, showing the importance of fine mineral particles for SOC storage, stabilisation and sequestration in arable soils. No change was detected in more labile fractions, indicating complete turnover of the annual residue-derived C in these fractions under a warm humid climate and in a highly base-saturated soil. The applied fractionation was thus useful to elucidate drivers and mechanisms of SOC formation and stabilisation. We conclude that residue incorporation is not a significant management practice affecting soil C storage in warm temperate climatic regions.


Sign in / Sign up

Export Citation Format

Share Document