Compressive Properties and Microstructure of Polymer-Concrete Under Dry Heat Environment at 80 °C

Author(s):  
Jipeng Zhao ◽  
Lianjun Chen ◽  
Guoming Liu ◽  
Xiangrui Meng
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Gonzalo Martínez-Barrera ◽  
Enrique Vigueras Santiago ◽  
Susana Hernández López ◽  
Osman Gencel ◽  
Fernando Ureña-Nuñez

Effects of gamma radiation and the polypropylene fibers on compressive properties of polymer concrete composites (PC) were studied. The PCs had a composition of 30 wt% of unsaturated polyester resin and 70 wt% of marble particles which have three different sizes (small, medium, and large). The PCs were submitted to 200, 250, and 300 kGy of radiation doses. The results show that the compressive properties depend on the combination of the polypropylene fiber concentration and the applied radiation dose. The compressive strength value is highest when using medium particle size, 0.1 vol% of polypropylene fibers and 250 kGy of dose; moreover, the compressive modulus decreases when increasing the particle size.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Gonzalo Martínez-Barrera ◽  
Ana Laura Martínez-Hernández ◽  
Carlos Velasco-Santos ◽  
Witold Brostow

AbstractThe well-known key problem with concrete is that its compressive strength and the compression modulus are insufficient for a variety of applications. Our polymer concrete (PC) consists of an unsaturated polyester resin as the polymeric matrix, silica sand as the inorganic aggregate, plus atactic polypropylene (PP) fibers. A further property improvement can be achieved by gamma irradiation and we apply here two methods. The first method consists in irradiation of PP fibers first and then adding them to the PC. The second route consists in irradiation of PC after inclusion of PP fibers. Along both routes we have applied the radiation at dosages ranging from 5 to 150 kGy. In the second route irradiation of silica sand results in larger contact areas of surfaces with PP fibers and with the polyester resin-as seen in scanning electron microscopy. The second route provides compressive properties which is better by a factor of two or three (depending on the irradiation dose) than the first one.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Gonzalo Martínez-Barrera ◽  
Witold Brostow

AbstractEffects of gamma radiation and the marble particle size on compressive properties and the dynamic elastic modulus of polymer concretes (PCs) were studied. The PCs had a composition of 30 % of unsaturated polyester resin and 70 wt. % of marble as aggregate. Different types of PC were developed with the combination of one, two or three marble-particle sizes. The materials were submitted to 5, 10, 50, 100 and 150 kGy of radiation doses. Both the compressive properties and the dynamic elastic modulus values depend on the combination of the marble-particle sizes and the applied radiation dose. Higher numbers of dispersed particles per unit volume provide more resistance to crack propagation. On the other hand, longer particles give more reinforcement. As a result of these two competing effects, medium size marble particles provide the highest compression modulus


Author(s):  
K. Cowden ◽  
B. Giammara ◽  
T. Devine ◽  
J. Hanker

Plaster of Paris (calcium sulfate hemihydrate, CaSO4. ½ H2O) has been used as a biomedical implant material since 1892. One of the primary limiting factors of these implants is their mechanical properties. These materials have low compressive and tensile strengths when compared to normal bone. These are important limiting factors where large biomechanical forces exist. Previous work has suggested that sterilization techniques could affect the implant’s strength. A study of plaster of Paris implant mechanical and physical properties to find optimum sterilization techniques therefore, could lead to a significant increase in their application and promise for future use as hard tissue prosthetic materials.USG Medical Grade Calcium Sulfate Hemihydrate Types A, A-1 and B, were sterilized by dry heat and by gamma radiation. Types A and B were additionally sterilized with and without the setting agent potassium sulfate (K2SO4). The plaster mixtures were then moistened with a minimum amount of water and formed into disks (.339 in. diameter x .053 in. deep) in polyethylene molds with a microspatula. After drying, the disks were fractured with a Stokes Hardness Tester. The compressive strengths of the disks were obtained directly from the hardness tester. Values for the maximum tensile strengths σo were then calculated: where (P = applied compression, D = disk diameter, and t = disk thickness). Plaster disks (types A and B) that contained no setting agent showed a significant loss in strength with either dry heat or gamma radiation sterilization. Those that contained potassium sulfate (K2SO4) did not show a significant loss in strength with either sterilization technique. In all comparisons (with and without K2SO4 and with either dry heat or gamma radiation sterilization) the type B plaster had higher compressive and tensile strengths than that of the type A plaster. The type A-1 plaster however, which is specially modified for accelerated setting, was comparable to that of type B with K2SO4 in both compressive and tensile strength (Table 1).


2019 ◽  
Vol 26 (4) ◽  
pp. 197-208
Author(s):  
Leo Gu Li ◽  
Albert Kwok Hung Kwan

Previous research studies have indicated that using fibres to improve crack resistance and applying expansive agent (EA) to compensate shrinkage are both effective methods to mitigate shrinkage cracking of concrete, and the additions of both fibres and EA can enhance the other performance attributes of concrete. In this study, an EA was added to fibre reinforced concrete (FRC) to produce concrete mixes with various water/binder (W/B) ratios, steel fibre (SF) contents and EA contents for testing of their workability and compressive properties. The test results showed that adding EA would slightly increase the superplasticiser (SP) demand and decrease the compressive strength, Young’s modulus and Poisson’s ratio, but significantly improve the toughness and specific toughness of the steel FRC produced. Such improvement in toughness may be attributed to the pre-stress of the concrete matrix and the confinement effect of the SFs due to the expansion of the concrete and the restraint of the SFs against such expansion.


2020 ◽  
Vol 35 (23-24) ◽  
pp. 3157-3169
Author(s):  
Qingyuan Xu ◽  
Shuguang Li ◽  
Runsheng Hu ◽  
Mengmeng Liu ◽  
Dong Wang ◽  
...  

Abstract


2020 ◽  
Vol 54 (6) ◽  
pp. 410-416
Author(s):  
Joyce M. Hansen ◽  
Scott Weiss ◽  
Terra A. Kremer ◽  
Myrelis Aguilar ◽  
Gerald McDonnell

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, has challenged healthcare providers in maintaining the supply of critical personal protective equipment, including single-use respirators and surgical masks. Single-use respirators and surgical masks can reduce risks from the inhalation of airborne particles and microbial contamination. The recent high-volume demand for single-use respirators and surgical masks has resulted in many healthcare facilities considering processing to address critical shortages. The dry heat process of 80°C (176°F) for two hours (120 min) has been confirmed to be an appropriate method for single-use respirator and surgical mask processing.


Sign in / Sign up

Export Citation Format

Share Document