scholarly journals EphA3 targeting reduces in vitro adhesion and invasion and in vivo growth and angiogenesis of multiple myeloma cells

2017 ◽  
Vol 40 (5) ◽  
pp. 483-496 ◽  
Author(s):  
Francesco La Rocca ◽  
Irma Airoldi ◽  
Emma Di Carlo ◽  
Pina Marotta ◽  
Geppino Falco ◽  
...  
Oncogene ◽  
2021 ◽  
Author(s):  
Yinyin Xu ◽  
Jing Guo ◽  
Jing Liu ◽  
Ying Xie ◽  
Xin Li ◽  
...  

AbstractMyeloma cells produce excessive levels of dickkopf-1 (DKK1), which mediates the inhibition of Wnt signaling in osteoblasts, leading to multiple myeloma (MM) bone disease. Nevertheless, the precise mechanisms underlying DKK1 overexpression in myeloma remain incompletely understood. Herein, we provide evidence that hypoxia promotes DKK1 expression in myeloma cells. Under hypoxic conditions, p38 kinase phosphorylated cAMP-responsive element-binding protein (CREB) and drove its nuclear import to activate DKK1 transcription. In addition, high levels of DKK1 were associated with the presence of focal bone lesions in patients with t(4;14) MM, overexpressing the histone methyltransferase MMSET, which was identified as a downstream target gene of hypoxia-inducible factor (HIF)-1α. Furthermore, we found that CREB could recruit MMSET, leading to the stabilization of HIF-1α protein and the increased dimethylation of histone H3 at lysine 36 on the DKK1 promoter. Knockdown of CREB in myeloma cells alleviated the suppression of osteoblastogenesis by myeloma-secreted DKK1 in vitro. Combined treatment with a CREB inhibitor and the hypoxia-activated prodrug TH-302 (evofosfamide) significantly reduced MM-induced bone destruction in vivo. Taken together, our findings reveal that hypoxia and a cytogenetic abnormality regulate DKK1 expression in myeloma cells, and provide an additional rationale for the development of therapeutic strategies that interrupt DKK1 to cure MM.


2016 ◽  
Vol 17 (11) ◽  
pp. 1927 ◽  
Author(s):  
Bingqian Xie ◽  
Zhijian Xu ◽  
Liangning Hu ◽  
Gege Chen ◽  
Rong Wei ◽  
...  

Blood ◽  
1994 ◽  
Vol 84 (9) ◽  
pp. 3017-3025 ◽  
Author(s):  
VS Goldmacher ◽  
LA Bourret ◽  
BA Levine ◽  
RA Rasmussen ◽  
M Pourshadi ◽  
...  

Abstract We report the development of a potent anti-CD38 immunotoxin capable of killing human myeloma and lymphoma cell lines. The immunotoxin is composed of an anti-CD38 antibody HB7 conjugated to a chemically modified ricin molecule wherein the binding sites of the B chain have been blocked by covalent attachment of affinity ligands (blocked ricin). Conjugation of blocked ricin to the HB7 antibody has minimal effect on the apparent affinity of the antibody and no effect on the ribosome-inactivating activity of the ricin A-chain moiety. Four to six logs of CD38+ tumor cell line kill was achieved at concentrations of HB7-blocked ricin in the range of 0.1 to 3 nmol/L. Low level of toxicity for normal bone marrow (BM) granulocyte-macrophage colony- forming units (CFU-GM), burst-forming units-erythroid (BFU-E), colony- forming units-granulocyte/erythroid/monocyte/macrophage (CFU-GEMM) cells was observed. Greater than two logs of CD38+ multiple myeloma cells were depleted from a 10-fold excess of normal BM mononuclear cells (BMMCs) after an exposure to HB7-blocked ricin under conditions (0.3 nmol/L) that were not very toxic for the normal BM precursors. HB7- blocked ricin was tested for its ability to inhibit protein synthesis in fresh patients' multiple myeloma cells and in normal BMMCs isolated from two healthy volunteers; tumor cells from four of five patients were 100-fold to 500-fold more sensitive to the inhibitory effect of HB7-blocked ricin than the normal BM cells. HB7 antibody does not activate normal resting peripheral blood lymphocytes, and HB7-blocked ricin is not cytotoxic toward these cells at concentrations of up to 1 nmol/L. The potent killing of antigen-bearing tumor cells coupled with a lack of effects on peripheral blood T cells or on hematopoietic progenitor cells suggests that HB7-blocked ricin may have clinical utility for the in vivo or in vitro purging of human multiple myeloma cells.


Blood ◽  
2014 ◽  
Vol 124 (12) ◽  
pp. 1915-1925 ◽  
Author(s):  
Jagadish Kummetha Venkata ◽  
Ningfei An ◽  
Robert Stuart ◽  
Luciano J. Costa ◽  
Houjian Cai ◽  
...  

Key Points SK2 is overexpressed in myeloma cells and contributes to myeloma cell survival and proliferation. SK2-specific inhibitor promotes proteasome degradation of Mcl-1 and c-Myc and inhibits myeloma growth in vitro and in vivo.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 11-13 ◽  
Author(s):  
XG Zhang ◽  
B Klein ◽  
R Bataille

Abstract It has recently been demonstrated that interleukin-6 (IL-6) is a potent myeloma-cell growth factor in the majority of patients with multiple myeloma (MM). Using an anti-bromodeoxyuridine monoclonal antibody (MoAb) to specifically count myeloma cells in the S-phase (ie, labeling index, LI), we demonstrate that the IL-6 responsiveness of myeloma cells in vitro is directly correlated with their LI in vivo. Myeloma cells from all 13 patients with high LIs in vivo (greater than or equal to 1%) responded in vitro to IL-6, the strongest response occurring in cells from five patients with plasma-cell leukemia. In contrast, the cells of only two of eight patients with low myeloma-cell LIs in vivo (less than 1%) responded to IL-6 in vitro. After seven days of culturing with 1,000 U/mL recombinant IL-6 (rIL-6), the median LI value in the first group of patients (in vivo LI greater than or equal to 1%) was 11%, ie 11 times higher (P less than .01) than the median LI value (1%) in the second group of patients (in vivo LI less than 1%). Thus, the in vitro IL-6 responsiveness of myeloma cells is directly related to their in vivo proliferative status, and hence to the severity of the disease.


2011 ◽  
Vol 17 (16) ◽  
pp. 5311-5321 ◽  
Author(s):  
Dharminder Chauhan ◽  
Ze Tian ◽  
Bin Zhou ◽  
Deborah Kuhn ◽  
Robert Orlowski ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4922-4922 ◽  
Author(s):  
Vito J. Palombella ◽  
Emmanuel Normant ◽  
Janid Ali ◽  
John Barrett ◽  
Michael Foley ◽  
...  

Abstract IPI-504 is a novel inhibitor of Hsp90 based on the geldanamycin pharmacophore. When placed in rat, monkey, and human blood, IPI-504 rapidly converts to the known and well-studied compound 17-allylamino-17-demethoxy-geldanamycin (17-AAG). 17-AAG is the subject of multiple clinical trials for the treatment of hematologic and solid tumors. However, 17-AAG suffers from poor aqueous solubility necessitating the use of sub-optimal formulations to deliver this agent to patients. IPI-504 is over 1000-fold more soluble than 17-AAG in aqueous solution. In vitro, both 17-AAG and IPI-504 bind tightly to, and selectively inhibit Hsp90 derived from cancer cells. The cytotoxic effect of IPI-504, as well as its ability to stimulate the degradation of Hsp90 client proteins and increase the intracellular levels Hsp70, were monitored in two human multiple myeloma cells lines (RPMI-8226 and MM1.S). The effects of IPI-504 were compared to 17-AAG. We demonstrate that the actions of IPI-504 are bioequivalent to 17-AAG and that both compounds induce apoptosis in these cells and stimulate the degradation of HER2 and c-Raf. In addition, both agents stimulate Hsp70 protein levels. In all cases the EC50s are virtually the same for both molecules (~200–400 nM). Furthermore, IPI-504 inhibits the secretion of immunoglobulin light chain from the RPMI-8226 multiple myeloma cells (EC50 ~300 nM). Importantly, IPI-504 is active in tumor xenograft models of multiple myeloma. The data indicate that active metabolites of IPI-504 accumulate in these xenografts long after these metabolites are cleared from the plasma compartment, suggesting that they preferentially accumulate in tumor cells based on their increased affinity to Hsp90 derived from tumor cells. In conclusion, we have developed IPI-504 as a novel, potent inhibitor of Hsp90 with greatly increased solubility over 17-AAG, and that IPI-504 is an active anti-tumor agent in vitro and in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 641-641 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Katherine Rendahl ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of multiple myeloma (MM) patients results in the ectopic expression of the receptor tyrosine kinase, Fibroblast Growth Factor Receptor3 (FGFR3). Wild-type FGFR3 induces proliferative signals in myeloma cells and appears to be weakly transforming in a hematopoeitic mouse model. The subsequent acquisition of FGFR3 activating mutations in some MM is associated with disease progression and is strongly transforming in several experimental models. The clinical impact of t(4;14) translocations has been demonstrated in several retrospective studies each reporting a marked reduction in overall survival. We have previously shown that inhibition of activated FGFR3 causes morphologic differentiation followed by apoptosis of FGFR3 expressing MM cell lines, validating activated FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these poor-prognosis patients. CHIR258 is a small molecule kinase inhibitor that targets Class III–V RTKs and inhibits FGFR3 with an IC50 of 5 nM in an in vitro kinase assay. Potent anti-tumor and anti-angiogenic activity has been demonstrated in vitro and in vivo. We employed the IL-6 dependent cell line, B9 that has been engineered to express wild-type FGFR3 or active mutants of FGFR3 (Y373C, K650E, G384D and 807C), to screen CHIR258 for activity against FGFR3. CHIR258 differentially inhibited FGF-mediated growth of B9 expressing wild-type and mutant receptors found in MM, with an IC50 of 25 nM and 80 nM respectively as determined by MTT proliferation assay. Growth of these cells could be rescued by IL-6 demonstrating selectivity of CHIR258 for FGFR3. We then confirmed the activity of CHIR258 against FGFR3 expressing myeloma cells. CHIR258 inhibited the viability of FGFR3 expressing KMS11 (Y373C), KMS18 (G384D) and OPM-2 (K650E) cell lines with an IC50 of 100 nM, 250 nM and 80 nM, respectively. Importantly, inhibition with CHIR258 was still observed in the presence of IL-6, a potent growth factors for MM cells. U266 cells, which lack FGFR3 expression, displayed minimal growth inhibition demonstrating that at effective concentrations, CHIR258 exhibits minimal nonspecific cytotoxicity on MM cells. Further characterization of this finding demonstrated that inhibition of cell growth corresponded to G0/G1 cell cycle arrest and dose-dependent inhibition of downstream ERK phosphorylation. In responsive cell lines, CHIR258 induced apoptosis via caspase 3. In vitro combination analysis of CHIR258 and dexamethasone applied simultaneously to KMS11 cells indicated a synergistic interaction. In vivo studies demonstrated that CHIR258 induced tumor regression and inhibited growth of FGFR3 tumors in a plasmacytoma xenograft mouse model. Finally, CHIR258 produced cytotoxic responses in 4/5 primary myeloma samples derived from patients harboring a t(4;14) translocation. These data indicate that the small molecule inhibitor, CHIR258 potently inhibits FGFR3 and has activity against human MM cells setting the stage for a Phase I clinical trial of this compound in t(4;14) myeloma.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4795-4795
Author(s):  
Patrick J. Frost ◽  
YiJiang Shi ◽  
Carolyne Bardalaban ◽  
Bao Hoang ◽  
Alan Lichtenstein

Abstract In a previous study, we showed that heightened AKT activity sensitized multiple myeloma (MM) cells to the in vivo anti-tumor effects of CCI-779. To test the mechanism of AKT’s regulatory role, we studied isogenic U266 MM cell lines transfected with an activated AKT allele or empty vector. The AKT-transfected cells were markedly more sensitive to cytostasis induced in vitro by rapamycin or in vivo by CCI-779. In contrast, cells with quiescent AKT were completely resistant. The ability of rapamycin and CCI-779 to inhibit D-cyclin expression was also significantly greater in AKT-transfected MM cells and this was, in part, due to a greater ability to curtail cap-independent translation and internal ribosome entry site (IRES) activity of D-cyclin transcripts. As ERK/p38 activity can facilitate IRES-mediated translation of some transcripts, we investigated ERK/p38 as regulators of rapamycin sensitivity. AKT-transfected cells demonstrated significantly decreased ERK and p38 activity, suggesting their involvement. However, only an ERK inhibitor prevented D-cyclin IRES activity in resistant “low AKT” myeloma cells while a p38 inhibitor had no effect. Furthermore, the combination of rapamycin and the ERK inhibitor successfully sensitized myeloma cells to rapamycin in terms of down regulated D-cyclin protein expression and G1 arrest. These data support a scenario where ERK facilitates D-cyclin IRES function and heightened AKT activity down regulates this ERK-dependent phenomenon. Thus ERK and AKT activity are potential predictors of responsiveness to mTOR inhibitors.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 277-277 ◽  
Author(s):  
Inger S. Nijhof ◽  
Willy A. Noort ◽  
Jeroen Lammerts van Bueren ◽  
Berris van Kessel ◽  
Joost M. Bakker ◽  
...  

Abstract Multiple myeloma (MM) remains an incurable malignancy of clonal plasma cells. Although the new generation of immunomodulatory agents, such as lenalidomide (LEN), and the potent proteasome inhibitor bortezomib (BORT) have significantly improved the overall survival of MM patients, all chemotherapy strategies are eventually hampered by the development of drug-resistance. The outcome of patients who are refractory to thalidomide, lenalidomide (LEN) and bortezomib (BORT) is very poor. Set out with the idea that targeted immunotherapy with human antibodies may offer new perspectives for MM patients, we have recently developed daratumumab (DARA), a CD38 human antibody with broad-spectrum killing activity, mainly via ADCC (antibody dependent cellular cytotoxicity) and CDC (complement dependent cytotoxicity). In our previous preclinical studies and in current clinical phase I/II trials, DARA induces marked anti-MM activity. Based on these encouraging results, we now explored the potential activity of DARA for patients who are refractory to LEN- and/or BORT. In a recently developed human-mouse hybrid model that allows the in vivo engraftment and outgrowth of patient-derived primary myeloma cells in immune deficient Rag2-/-gc-/- mice, single dose DARA treatment appeared to effectively inhibit the malignant expansion of primary MM cells derived from a LEN- and BORT-refractory patient, indicating the potential efficacy of DARA even in LEN/BORT refractory patients. To substantiate the conclusions of these in vivo data, we conducted in vitro assays, in which full BM-MNCs from LEN (n=11) and LEN/BORT (n=8) refractory patients were treated with DARA alone or the combination of DARA with LEN or BORT to induce MM cell lysis. As expected, LEN alone induced no or little lysis of MM cells in the LEN-refractory patients and also BORT was not able to induce any lysis in the BORT-refractory patients. On the contrary, DARA induced substantial levels of MM cell lysis in all LEN and LEN/BORT-refractory patients. This lysis was significantly enhanced by combination with LEN or BORT. The combination of DARA and BORT improved MM lysis by additive mechanisms. However, LEN improved DARA-mediated lysis of MM cells in a synergistic manner through the activation of effector cells involved in DARA-mediated ADCC. In conclusion, our results demonstrate that DARA is also effective against multiple myeloma cells derived from LEN- and BORT-refractory patients. Especially LEN seems to improve responses in a synergistic manner. Our results provide a rationale for clinical evaluation of DARA in combination with LEN to achieve more effective results in LEN- and BORT-refractory patients. Disclosures: Lammerts van Bueren: Genmab: Employment. Bakker:Genmab: Employment. Parren:Genmab: Employment. van de Donk:Celgene: Research Funding. Lokhorst:Genmab A/S: Consultancy, Research Funding; Celgene: Honoraria; Johnson-Cilag: Honoraria; Mudipharma: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document