Electrostatic System and Powder Feed Combined

2019 ◽  
Vol 12 (4) ◽  
pp. 20-21
Author(s):  
2011 ◽  
Vol 31 (4) ◽  
pp. 695-703 ◽  
Author(s):  
Ulisses R. Antuniassi ◽  
Edivaldo D. Velini ◽  
Rone B. de Oliveira ◽  
Maria A. Peres-Oliveira ◽  
Zulema N. Figueiredo

The soybean rust caused by Phakopsora pachyrhizi is considered the main soybean disease and consequently the appropriate selection and the use of spraying equipment are vital for its control. The aim of this study was to evaluate the performance of aerial application equipment for soybean rust control. It was used: Micronair AU 5000 at 10 L ha-1 (with oil) and at 20 L ha-1 (without oil); Stol ARD atomizer at 10 and 20 L ha-1 (both with oil) and Spectrum (electrostatic) at 10 L ha-1 (without oil). The adjuvant was cotton oil (1.0 L ha-1) with emulsifier (BR 455) at 0.025 L ha-1. The field trial was set up at the 3rd fungicide application, when f four replications of each treatment. There were no statistical differences among treatments related to fungicide deposits by at a Confidence Interval of 95%. It was observed that the best results were obtained with Micronair (10 L ha-1 with oil), Stol (20 L ha-1 with oil) and electrostatic system at 10 L ha-1 with the lowest relative humidity (64%).


Author(s):  
Peter Kayode Farayibi

Laser deposition is an advanced manufacturing technology capable of enhancing service life of engineering components by hard-facing their functional surfaces. There are quite a number of parameters involved in the process and also desirable output characteristics. These output characteristics are often independently optimised and which may lead to poor outcome for other characteristics, hence the need for multi-objective optimisation of all the output characteristics. In this study, a laser deposition of Ti-6Al-4V wire and tungsten carbide powder was made on a Ti-6Al-4V substrate with a view to achieve a metallurgical bonded metal matrix composite on the substrate. Single clads were deposited with a desire to optimise the composite clad characteristics (height, width and reinforcement fraction) for the purpose of surface coating. Processing parameters (laser power, traverse speed, wire feed rate, powder feed rate) were varied, the experiment was planned using Taguchi method and output characteristics were analysed using principal component analysis approach. The results indicated that the parameters required for optimised clad height, width, and reinforcement fraction necessary for surface coating is laser power of 1800 W, traverse speed of 200 mm/min, wire feed rate 700 mm/min and powder feed rate of 30 g/min. The powder feed rate was found to most significantly contribute 43.99%, followed by traverse speed 39.77%, laser power 15.87% with wire feed rate having the least contribution towards the multi-objective optimisation. Confirmation results showed that clad width and reinforcement fraction were significantly improved by the optimised parameters. The multi-objective optimisation procedure is a useful tool necessary to identify the process factors required to enhance output characteristics in laser processing.


Author(s):  
Shaowu Liu ◽  
Michel Moliere ◽  
Hanlin Liao

Abstract In this work; a novel liquid fuel HVOF process fueled with ethanol was used to prepare 75wt%Cr3C2–25wt%NiCr coatings on AISI304 stainless steel substrate. Taguchi method was employed to optimize the spray parameters (ethanol flow rate; oxygen flow rate; powder feed rate and standoff distance) to achieve better erosion resistance at 90° impact angle. The results indicated that ethanol flow rate and oxygen flow rate were identified as the highly contributing parameters on the erosion wear loss. The important sequence of the spray parameter is ethanol flow rate > oxygen flow rate > standoff distance > powder feed rate. The optimal spray parameter (OSP) for minimum erosion wear loss was obtained under ethanol flow rate of 28slph; oxygen flow rate of 420slpm; powder feed rate of 76.7 g/min and standoff distance of 300mm. The phase composition; microstructure; hardness; porosities; and the erosion wear behaviors of the coatings have been studied in detail. Besides; erosion wear testing of the optimized coating was conducted at 30°; 60° and 90° impact angle using air jet erosion testing machine. The SEM images of the erodent samples were taken to analyze the erosion mechanism.


2019 ◽  
Vol 65 (No. 4) ◽  
pp. 123-130
Author(s):  
Mojtaba Afsharipour ◽  
Kazem Jafari-Naeimi ◽  
Hadi Samimi-Akhijahani

In order to separate the impurities in vegetable seeds, a tribo-aero-electrostatic separator was designed and manufactured. The data analysis of the pure Descurainia Sophia seed shows that the interaction of the voltage, distance and angle was significant on the weight of the D. Sophia at the level of 1%. To determine and compare the size of the separated seeds, a laser diffraction device with the possibility of analysing the size distribution of the particles was used. The results showed that the best purity (99.5%) with the highest percentage of the relative frequency of the D. Sophia seeds size was obtained for box 1 (the first box) with a seed size of 680 μm. By moving from box 1 towards box 4, the amount of the impurities due to the variation of the electrical properties of the materials increases, although the value of the impurities for the samples is acceptable.


2008 ◽  
Vol 375-376 ◽  
pp. 338-342 ◽  
Author(s):  
Xia Ji ◽  
Jian Zhong Zhou ◽  
Hua Feng Guo ◽  
Da Peng Xu

This paper presents an experimental investigation on the metal components fabricated by laser cladding. In the present study, two process of laser cladding were conducted, that is pre-placed powder cladding and coaxial powder-feed cladding. The effect of processing parameters was studied and optimum set of parameters for the superior surface quality was established by employing the orthogonal design. The fabricated components were subjected to metallographic examinations and micro-hardness measurement. Results indicated that the microstructure of coaxial cladding components was finer than pre-placed powder cladding components. The micro-hardness of the fabricated specimen along and vertical the scanning direction were measured using a HVS-1000 micro-hardness tester with a 200 g applied load. Analysis of the physical properties provided further evidence of differences in micro-hardness produced by different process conditions, and the average micro-hardness value of pre-placed power cladding layer was lower than the coaxial powder-feed cladding layer.


1993 ◽  
Vol 7 (7) ◽  
pp. 563-565
Author(s):  
V E Arkharpov ◽  
A A Ablaev ◽  
I V Geletin ◽  
L T Krasmov
Keyword(s):  

Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 521 ◽  
Author(s):  
Qiang Zhang ◽  
Siyu Zhang ◽  
Min Zheng ◽  
Yongchao Ou ◽  
Shang Sui ◽  
...  

A near β titanium alloy, Ti5Al2Sn2Zr4Mo4Cr, was fabricated by directed energy deposition (DED) with different powder feed rates to investigate the formation of fully equiaxed β grains. A two-dimensional numerical model was developed to investigate the thermal conditions of the molten pool. Experimental results showed that the formation of an epitaxial cellular structure at the bottom of the molten pool is almost unavoidable. An increase in the powder feed rate produces a moderate thermal condition and promotes the formation of equiaxed grains in a single cladding layer. However, it could not guarantee the formation of a fully equiaxed microstructure in a block sample. From a low to high powder feed rate, fully columnar, mixed equiaxed–columnar, and fully equiaxed microstructures were obtained. Grain morphology was also affected by the remolten process. Increasing the powder feed rate reduced the remolten depth and broke the continuity of the epitaxial cellular structure, leading to different grain morphologies.


Sign in / Sign up

Export Citation Format

Share Document