Influence of Thermally Induced Stress Gradients on Fatigue Life

MTZ worldwide ◽  
2021 ◽  
Vol 82 (12) ◽  
pp. 66-70
Author(s):  
Marcus Thiele ◽  
Stefan Eckmann ◽  
Min Huang ◽  
Uwe Gampe
Author(s):  
Marcus Thiele ◽  
Stefan Eckmann ◽  
Min Huang ◽  
Uwe Gampe ◽  
Kathrin A. Fischer ◽  
...  

Abstract Today’s and future parameters of stationary gas turbines and aircraft engines require intensive and highly efficient cooling of hot gas path components. High temperature and thermally induced stress gradients with impact on fatigue life are the consequence. Thermally induced stress gradients differ from geometrically induced stress gradients with respect to stress mechanics by the independence from external loads and material mechanics by the influence of temperature on material properties and strength. Regarding the contribution and evaluation on damage, the latter characteristic feature in turbomachinery is currently not fully understood. Therefore, a test facility has been designed, set up, and reported in GT2018-76519 for the investigation of the influence of stationary temperature, and thus thermally induced stress gradients, on the damage evolution of cooled high-temperature components. To achieve high temperature and thermally induced stress gradients, large heat fluxes are required. A unique radiation heating has been developed allowing very high heat fluxes of q̇ ≥ 1.5 MW/m2 for testing of hollow cylindrical specimens. The conventional cast nickel-base alloy Mar-M247 has been chosen to study the influence of thermally induced stress gradients on fatigue life. The low-cycle fatigue testing of the hollow cylindrical specimens has been conducted both with and without superimposed stationary temperature gradients. In addition, Complex Low-Cycle Fatigue (CLCF) tests with symmetric and nonsymmetric loading conditions have been performed to provide the necessary database for the adaptation of a viscoplastic deformation model. To calculate the local stress-strain field and service life of the test specimens, linear elastic and viscoplastic finite element studies have been performed and were assessed by means of a fracture mechanics-based lifetime model. The test results show the considerable influence of the temperature gradient on the low-cycle fatigue life for the investigated material. Both the radial temperature variation over the specimen wall with a hot outer surface and a cooled inner surface as well as the thermally induced stresses are stated to be the main drivers for the change in low-cycle fatigue life. The test results enhance the understanding of fatigue-damage mechanisms under local unsteady conditions and can be used as a basis for improved service life predictions.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Marcus Thiele ◽  
Stefan Eckmann ◽  
Min Huang ◽  
Uwe Gampe ◽  
Kathrin A. Fischer ◽  
...  

Abstract Today's and future parameters of stationary gas turbines and aircraft engines require intensive and highly efficient cooling of hot gas path components. High temperature and thermally induced stress gradients with impact on fatigue life are the consequence. Thermally induced stress gradients differ from geometrically induced stress gradients with respect to stress mechanics by the independence from external loads and material mechanics by the influence of temperature on material properties and strength. Regarding the contribution and evaluation on damage, the latter characteristic feature in turbomachinery is currently not fully understood. Therefore, a test facility has been designed, setup, and reported in GTP-18-1482 for the investigation of the influence of stationary temperature, and thus thermally induced stress gradients, on the damage evolution of cooled high-temperature components. To achieve high temperature and thermally induced stress gradients, large heat fluxes are required. A unique radiation heating has been developed allowing very high heat fluxes of q˙ ≥ 1.5 MW/m2 for testing of hollow cylindrical specimens. The conventional cast nickel-base alloy Mar-M247 has been chosen to study the influence of thermally induced stress gradients on fatigue life. The low-cycle fatigue testing of the hollow cylindrical specimens has been conducted both with and without superimposed stationary temperature gradients. In addition, complex low-cycle fatigue (CLCF) tests with symmetric and nonsymmetric loading conditions have been performed to provide the necessary database for the adaptation of a viscoplastic deformation model. To calculate the local stress–strain field and service life of the test specimens, linear elastic and viscoplastic finite element studies have been performed and were assessed by means of a fracture mechanics-based lifetime model. The test results show the considerable influence of the temperature gradient on the low-cycle fatigue life for the investigated material. Both the radial temperature variation over the specimen wall with a hot outer surface and a cooled inner surface as well as the thermally induced stresses are stated to be the main drivers for the change in low-cycle fatigue life. The test results enhance the understanding of fatigue-damage mechanisms under local unsteady conditions and can be used as a basis for improved service life predictions.


Author(s):  
Marcus Thiele ◽  
Uwe Gampe ◽  
Kathrin A. Fischer

A novel test facility has been designed and set up for the investigation of the influence of stationary temperature, and thus thermally induced stress gradients with respect to the damage evolution of cooled gas turbine components. Thermally induced stress gradients differ from geometrically induced stress gradients. From the point of view of stress mechanics, they are independent from external loads. From the perspective of material mechanics, their impact on service life is influenced by locally different material properties and strength. However, the impact of thermally induced stress gradients on the cyclic life of high loaded, cooled components is not precisely known. In order to increase knowledge surrounding these mechanisms, a research project was launched. To achieve high temperature gradients and extended mechanical stress gradients, large heat fluxes are required. The authors developed a test bench with a unique radiant heating to achieve very high heat fluxes of q̇ ≥ 1.6MW/m2 on cylindrical specimen. Special emphasis has been placed on homogenous temperature and loading conditions in order to achieve valid test results comparable to standard low cycle or thermo-mechanical fatigue tests. Different test concepts of the literature were reviewed and the superior performance of the new test rig concept was demonstrated. The austenitic stainless steel 316L was chosen as the model material for commissioning and validation of the test facility. The investigation of thermally induced stress gradients and, based on this analysis, low-cycle fatigue tests with superimposed temperature gradients were conducted. Linear elastic finite element studies were performed to calculate the local stress-strain field and the service life of the test specimens. The test results show a considerable influence of the temperature gradient on the low-cycle fatigue life of the investigated material. Both the temperature variation over the specimen wall and thermally induced stresses are stated to be the main drivers for the change in low-cycle fatigue life. The test results increase the understanding of fatigue damage mechanisms under local unsteady conditions and can serve as a basis for improved lifetime calculation methods.


Author(s):  
Marcus Thiele ◽  
Uwe Gampe ◽  
Kathrin A. Fischer

A novel test facility has been designed and setup for the investigation of the influence of stationary temperature, and thus thermally induced stress gradients with respect to the damage evolution of cooled gas turbine components. Thermally induced stress gradients differ from geometrically induced stress gradients. From the point of view of stress mechanics, they are independent from external loads. From the perspective of material mechanics, their impact on service life is influenced by locally different material properties and strength. However, the impact of thermally induced stress gradients on the cyclic life of high loaded, cooled components is not precisely known. In order to increase knowledge surrounding these mechanisms, a research project was launched. To achieve high temperature gradients and extended mechanical stress gradients, large heat fluxes are required. The authors developed a test bench with a unique radiant heating to achieve very high heat fluxes of q˙ ≥ 1.6 MW/m2 on cylindrical specimen. Special emphasis has been placed on homogenous temperature and loading conditions in order to achieve valid test results comparable to standard low-cycle or thermo-mechanical fatigue tests. Different test concepts of the literature were reviewed and the superior performance of the new test rig concept was demonstrated. The austenitic stainless steel 316 L was chosen as the model material for commissioning and validation of the test facility. The investigation of thermally induced stress gradients and, based on this analysis, low-cycle fatigue (LCF) tests with superimposed temperature gradients were conducted. Linear elastic finite element studies were performed to calculate the local stress–strain field and the service life of the test specimens. The test results show a considerable influence of the temperature gradient on the LCF life of the investigated material. Both the temperature variation over the specimen wall and thermally induced stresses (TIS) are stated to be the main drivers for the change in LCF life. The test results increase the understanding of fatigue damage mechanisms under local unsteady conditions and can serve as a basis for improved lifetime calculation methods.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000500-000504 ◽  
Author(s):  
Francy J. Akkara ◽  
Uday S. Goteti ◽  
Richard C. Jaeger ◽  
Michael C. Hamilton ◽  
Michael J. Palmer ◽  
...  

In certain applications, IC packages may be exposed to extreme temperatures and knowledge of thermally induced stress aids the prediction of performance degradation or failure of the IC. In the devices that are used in extreme conditions, the stress is caused mainly by the mismatch in expansion of various materials triggered by the different coefficients of thermal expansion. This work performed in this study is conducted using NMOS current mirror circuits that are cycled through a wide temperature range of −180°C to 80°C. These circuits are highly sensitive to stress and provide well-localized measurements of shear stress. The sensors are fabricated in such a way that the effects of certain stress components are isolated. These sensors are also temperature compensated so that only the effect of mechanical stress components is observed and changes in device performance due to temperature changes are minimal. Current readings obtained from the sensors are used to extract the shear stress component. Finite element simulations, using expected materials performance parameter information were also performed for similar packages and these results are compared to the measured results.


1997 ◽  
Vol 25 ◽  
pp. 177-182 ◽  
Author(s):  
J. A. Richter-Menge

In situ measurements of ice stress were made on a multi-year floe in the Alaskan Beaufort Sea over a 6 month period, beginning in October 1993. The data suggest that, in this region of the Arctic during this experiment, there were two main sources of stress: a thermally induced stress caused by changes in air temperature, and a stress generated by ice motion. Due to the natural damping of the snow and ice above the sensor, the thermally-induced stresses are low frequency (order of days). Stresses associated with periods of ice motion have both a high-frequency (order of hours), and low-frequency, content. The relative significance of these sources of stress is seasonal, reflecting the changes in the strength and continuity of the pack.


Sign in / Sign up

Export Citation Format

Share Document