Regulation of Antioxidant Enzymes and Invertases by Hydrogen Peroxide and Nitric Oxide Under ABA and Water-Deficit Stress in Wheat

2019 ◽  
Vol 8 (4) ◽  
pp. 441-451 ◽  
Author(s):  
Suchita Tanotra ◽  
Vikramjit Kaur Zhawar ◽  
Sucheta Sharma
2019 ◽  
Vol 42 ◽  
pp. e42463
Author(s):  
Lorena Gabriela Almeida ◽  
Paulo César Magalhães ◽  
Décio Karam ◽  
Eder Marcos da Silva ◽  
Amauri Alves Alvarenga

The present research seeks to elucidate the feasibility of chitosan (CHT) in the induction of water deficit tolerance in different maize hybrids, contrasting tolerance to water restriction, tolerance and sensitivity. The maize plants were subjected to water deficit and foliar application of different chitosan doses (60, 100, 140, and 180 mg L-1) at the pre-flowering growth stage and evaluated during the stress period of fifteen days. To understand the induction behaviour of the tolerance to water restriction, biophysical parameters, such as water potential, relative water content and chlorophyll content, gas exchange, and biochemical assays, were quantified based on the activity of SOD, CAT, APX, and PAL antioxidant enzymes, lipid peroxidation activity and hydrogen peroxide content. Among the treatments, maize plants subjected to chitosan foliar application at a dose of 140 mg L-1 presented similar behavioural responses to plants under favourable irrigation conditions. Such positive responses are related to the high degree of activity of antioxidant enzymes, gas exchange and low levels of lipid peroxidation and hydrogen peroxide. The results support the potential use of CHT to increase tolerance to water stress.


2016 ◽  
Vol 43 (10) ◽  
pp. 939 ◽  
Author(s):  
Asma Jday ◽  
Kilani Ben Rejeb ◽  
Ines Slama ◽  
Kaouthar Saadallah ◽  
Marianne Bordenave ◽  
...  

Nitric oxide (NO) – an endogenous signalling molecule in plants and animals – mediates responses to biotic and abiotic stresses. In the present study, we examined the role of exogenous application of NO in mediating stress responses in Cakile maritima Scop. seedlings under water deficit stress using sodium nitroprusside (SNP) as NO donor and as a pre-treatment before the application of stress. Water deficit stress was applied by withholding water for 14 days. Growth, leaf water content (LWC), osmotic potential (ψs), chlorophyll, malondialdehyde (MDA), electrolyte leakage (EL), proline and Δ1-pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH) protein levels were determined. Enzyme activities involved in antioxidant activities (superoxide dismutase (SOD) and catalase (CAT)) were measured upon withholding water. The results showed that shoot biomass production was significantly decreased in plants subjected to water deficit stress alone. However, in water deficit stressed plants pre-treated with SNP, growth activity was improved and proline accumulation was significantly increased. Proline accumulation was concomitant with the stimulation of its biosynthesis as shown by the accumulation of P5CS proteins. Nevertheless, no significant change in ProDH protein levels was observed. Besides plants showed lower water deficit-induced lipid membrane degradation and oxidative stress after the pretreatment with 100 µM SNP. This behaviour was related to the increased activity of SOD and CAT. Thus, we concluded that NO increased C. maritima drought tolerance and mitigated damage associated with water deficit stress by the regulation of proline metabolism and the reduction of oxidative damage.


2021 ◽  
Author(s):  
Fatemeh Ebrahimi ◽  
Amin Salehi ◽  
Mohsen Movahedi Dehnavi ◽  
Amin Mirshekari ◽  
Mohammad Hamidian ◽  
...  

Abstract BackgroundWater-deficit stress is one of the most important sources of damage to crop production worldwide. Adopting appropriate varieties using soil microorganisms such as arbuscular mycorrhiza(AM) can significantly reduce theadverseeffectsofwater deficiency.This study is aimed to evaluate the role of Funneliformismosseaeon nutrients uptake and some physiological traits of two chamomile varieties namely Bodgold (Bod) and Soroksári(Sor) under water-deficit stress. The pot experiment was performed in a hydroponic system within a completely randomized design considering four replications. Three levels of water-deficit stress (PEG 6000) were taken into account at water potentials of -0.4 and -0.8MPa. The second factor was AM inoculation.ResultsWater-deficit stress significantly reduced the uptake of macro-nutrients (N, P, and K) and micro-nutrients (Fe, Cu, Mn, and Zn) in the shoots and roots. Moreover, the level of osmolytes (total soluble sugars and proline) and the activity of antioxidant enzymes in the shoots of both varieties increased under water-deficit stress. In the case of Sor variety, the level of these compounds was more satisfactory. AM improved plant nutrition uptake and osmolyte contents while enhancing antioxidant enzymes and reducing theadverseeffectsofwater-deficit stress. Under water-deficit stress, the growth and total dry weight improved upon AM inoculation. ConclusionsIn general, inoculation of chamomile with AM balanced the uptake of nutrients increased the level of osmolytes, antioxidant enzymes, and hence improved plant characteristics under water-deficit stress in both varieties, however, it was more effective in reducing stress damages in Sor variety.


2019 ◽  
Vol 236 ◽  
pp. 1-6 ◽  
Author(s):  
Florian Philippe ◽  
Isabelle Verdu ◽  
Marie-Christine Morère-Le Paven ◽  
Anis M. Limami ◽  
Elisabeth Planchet

2017 ◽  
Vol 69 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Lydia Shtereva ◽  
Elisaveta Stoimenova ◽  
Marina Drumeva-Yoncheva ◽  
Bistra Michailova ◽  
Tanja Kartzeva ◽  
...  

The effect of prolonged water deficit on four Virginia (flue-cured) tobacco genotypes, Line 842, Oxford 207, RG11 and Virgin D, was analyzed in whole plants. Drought stress was induced by withholding irrigation and subjecting plants to low, moderate and severe regimes. Some growth indices such as fresh weight, plant growth rate, number, color and area of new developed leaves, as well as proline, hydrogen peroxide (H2O2) and malondialdehyde (MDA) content as a measure of oxidative stress were investigated to examine the role of genotype in water-deficit tolerance. Under stress, the weight of the aboveground parts of plants, plant growth height, number of new developed leaves and leaf area index decreased with the severity of treatment. The stressed plants accumulated more proline, malonildialdehide and hydrogen peroxide than control non-stressed plants under water-deficit conditions. The results showed that among the genotypes, Virgin D (VD) was the most sensitive to drought, while L 842 and Oxford 207 were moderately tolerant; RG11 was drought-tolerant. This suggests that the correlation between the physiological traits and level of antioxidative response exists and therefore it could be used as a rapid screening test to evaluate the drought tolerance of tobacco.


2021 ◽  
Author(s):  
Fatemeh Ebrahimi ◽  
Amin Salehi ◽  
Mohsen Movahedi Dehnavi ◽  
Amin Mirshekari ◽  
Mohammad Hamidian ◽  
...  

Abstract BackgroundWater-deficit stress is one of the most important sources of damage to crop production worldwide. Adopting appropriate varieties using soil microorganisms such as arbuscular mycorrhiza(AM) fungi can significantly reduce the adverse effects of water deficiency. This study is aimed to evaluate the role of Funneliformis mosseae on nutrients uptake and some physiological traits of two chamomile varieties namely Bodgold (Bod) and Soroksári (Sor) under water-deficit stress. The pot experiment was performed in a completely randomized design with three factors: water-deficit stress (PEG 6000) was applied along with Hoagland solution at three levels (0, -0.4 and -0.8 MPa), two German chamomile varieties (Bodgold (Bod) and Soroksari (Sor)) and AM inoculation (Funneliformis mosseae species (fungal and non-fungal)) at four replications in perlite substrate. ResultsWater-deficit stress significantly reduced the uptake of macro-nutrients (N, P, and K) and micro-nutrients (Fe, Cu, Mn, and Zn) in the shoots and roots. Moreover, the level of osmolytes (total soluble sugars and proline) and the activity of antioxidant enzymes in the shoots of both varieties increased under water-deficit stress. In the case of Sor variety, the level of these compounds was more satisfactory. AM improved plant nutrition uptake and osmolyte contents while enhancing antioxidant enzymes and reducing the adverse effects of water-deficit stress. Under water-deficit stress, the growth and total dry weight improved upon AM inoculation. ConclusionsIn general, inoculation of chamomile with AM balanced the uptake of nutrients increased the level of osmolytes, antioxidant enzymes, and hence improved plant characteristics under water-deficit stress in both varieties, however, it was more effective in reducing stress damages in Sor variety.


2015 ◽  
Vol 74 (1) ◽  
pp. 123-142 ◽  
Author(s):  
Koushik Chakraborty ◽  
Amrit L. Singh ◽  
Kuldeep A. Kalariya ◽  
Nisha Goswami ◽  
Pratap V. Zala

AbstractFrom a field experiment, the changes in oxidative stress and antioxidant enzyme activities were studied in six Spanish peanut cultivars subjected to 25−30 days of water deficit stress at two different stages: pegging and pod development stages. Imposition of water deficit stress significantly reduced relative water content, membrane stability and total carotenoid content in all the cultivars, whereas total chlorophyll content increased at pegging stage but decreased at pod developmental stage. Chlorophyll a/b ratio increased under water deficit stress in most of the cultivars suggesting a greater damage to chlorophyll b rather than an increase in chlorophyll a content. Oxidative stress measured in terms of H2O2, superoxide radical content and lipid peroxidation increased under water deficit stress, especially in susceptible cultivars such as DRG 1, AK 159 and ICGV 86031. Relationship among different physiological parameters showed that the level of oxidative stress, in terms of production of reactive oxygen species, was negatively correlated with activities of different antioxidant enzymes such as superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and glutathione reductase. In conclusion, the study shows that water deficit stress at pod development stage proved to be more detrimental than at pegging stage. The higher activities of antioxidant enzymes in the tolerant cultivars like ICGS 44 and TAG 24 were responsible for protection of oxidative damage and thus provide better tolerance to water deficit stress.


Sign in / Sign up

Export Citation Format

Share Document