scholarly journals COVID-19: Zinc and Angiotensin-Converting Enzyme 2 (ACE2) Deficiencies as Determinants of Risk and Severity of Disease: A Narrative Review

Author(s):  
Miklos P. Salgo
2012 ◽  
Vol 93 (9) ◽  
pp. 1924-1929 ◽  
Author(s):  
Ronald Dijkman ◽  
Maarten F. Jebbink ◽  
Martin Deijs ◽  
Aleksandra Milewska ◽  
Krzysztof Pyrc ◽  
...  

Like severe acute respiratory syndrome coronavirus (SARS-CoV), human coronavirus (HCoV)-NL63 employs angiotensin-converting enzyme 2 (ACE2) as a receptor for cellular entry. SARS-CoV infection causes robust downregulation of cellular ACE2 expression levels and it has been suggested that the SARS-CoV effect on ACE2 is involved in the severity of disease. We investigated whether cellular ACE2 downregulation occurs at optimal replication conditions of HCoV-NL63 infection. The expression of the homologue of ACE2, the ACE protein not used as a receptor by HCoV-NL63, was measured as a control. A specific decrease for ACE2 protein level was observed when HCoV-NL63 was cultured at 34 °C. Culturing the virus at the suboptimal temperature of 37 °C resulted in low replication of the virus and the effect on ACE2 expression was lost. We conclude that the decline of ACE2 expression is dependent on the efficiency of HCoV-NL63 replication, and that HCoV-NL63 and SARS-CoV both affect cellular ACE2 expression during infection.


2020 ◽  
Author(s):  
Cristina Garcia-Iriepa ◽  
Cecilia Hognon ◽  
Antonio Francés-Monerris ◽  
Isabel Iriepa ◽  
Tom Miclot ◽  
...  

<div><p>Since the end of 2019, the coronavirus SARS-CoV-2 has caused more than 180,000 deaths all over the world, still lacking a medical treatment despite the concerns of the whole scientific community. Human Angiotensin-Converting Enzyme 2 (ACE2) was recently recognized as the transmembrane protein serving as SARS-CoV-2 entry point into cells, thus constituting the first biomolecular event leading to COVID-19 disease. Here, by means of a state-of-the-art computational approach, we propose a rational evaluation of the molecular mechanisms behind the formation of the complex and of the effects of possible ligands. Moreover, binding free energy between ACE2 and the active Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein is evaluated quantitatively, assessing the molecular mechanisms at the basis of the recognition and the ligand-induced decreased affinity. These results boost the knowledge on the molecular grounds of the SARS-CoV-2 infection and allow to suggest rationales useful for the subsequent rational molecular design to treat severe COVID-19 cases.</p></div>


2021 ◽  
Vol 46 (2) ◽  
pp. 245-249
Author(s):  
Monika Cahova ◽  
Martin Kveton ◽  
Vojtech Petr ◽  
David Funda ◽  
Helena Dankova ◽  
...  

<b><i>Background:</i></b> Preclinical studies suggested that pharmacological inhibition of the renin-angiotensin-aldosterone system (RAAS) by ACE inhibitors (ACEis) or angiotensin II receptor blockers (ARBs) may increase local angiotensin-converting enzyme 2 (<i>ACE2</i>) expression. <b><i>Methods:</i></b> In this study, we evaluated the effect of ACEi or ARB treatment on expression of <i>ACE2</i>, <i>ACE</i>, and <i>AGTR1</i> in 3-month protocol kidney allograft biopsies of stable patients using RT-qPCR (<i>n</i> = 48). Protein ACE2 expression was assessed using immunohistochemistry from paraffin sections. <b><i>Results:</i></b> The therapy with RAAS blockers was not associated with increased <i>ACE2, ACE</i>, or <i>ATGR1</i> expression in kidney allografts and also ACE2 protein immunohistochemistry did not reveal differences among groups. <b><i>Conclusions:</i></b> ACEis or ARBs in kidney transplant recipients do not affect local ACE2 expression. This observation supports long-term RAAS treatment in kidney transplant recipients, despite acute complications such as COVID-19 where ACE2 serves as the entry protein for infection.


Sign in / Sign up

Export Citation Format

Share Document